AccScience Publishing / MI / Online First / DOI: 10.36922/MI025090016
REVIEW ARTICLE

Post-translational modifications in sepsis: Mechanistic insights and therapeutic opportunities

Wenyue Gao1,2,3,4 Yue Zhang1,2,3 Liuluan Zhu1,2,3*
Show Less
1 Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
2 Beijing Institute of Infectious Diseases, Beijing, China
3 National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
4 Department of Infectious, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
Submitted: 28 February 2025 | Revised: 11 April 2025 | Accepted: 14 April 2025 | Published: 24 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Sepsis, a life-threatening condition marked by systemic inflammation and multi-organ dysfunction, poses a persistent clinical challenge. Post-translational modifications (PTMs) dynamically regulated inflammatory signaling, immune responses, and cell death, positioning them as a pivotal focus in sepsis research. This review systematically explores the regulatory networks of five key PTMs – phosphorylation, ubiquitination, SUMOylation, acetylation, and lactylation – in sepsis. In this review, we highlight recent discoveries of genes and molecules that modulate these PTMs, influencing inflammation and organ dysfunction, and evaluate their potential as therapeutic targets or prognostic biomarkers. Furthermore, we discuss how PTMs offer novel therapeutic opportunities, providing novel insights to address the shortcomings of traditional anti-infective approaches.

Keywords
Sepsis
Post-translational modifications
Phosphorylation
Ubiquitination
SUMOylation
Acetylation
Lactylation
Inflammation
Funding
This work was supported by the Beijing Natural Science Foundation (grant number: L246039), the National Natural Science Foundation of China (grant numbers: 82372189, 81871586, and 82172128), and the Beijing High-Level Public Health Technical Talent Training Program (Discipline Backbone Talent 02-32).
Conflict of interest
Liuluan Zhu is the Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392(10141):75-87. doi: 10.1016/S0140-6736(18)30696-2

 

  1. White KC, Serpa-Neto A, Hurford R, et al. Sepsis-associated acute kidney injury in the intensive care unit: Incidence, patient characteristics, timing, trajectory, treatment, and associated outcomes. A multicenter, observational study. Intensive Care Med. 2023;49(9):1079-1089. doi: 10.1007/s00134-023-07138-0

 

  1. Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: Pathogenesis and therapeutic implications. Cell Commun Signal. 2024;22(1):241. doi: 10.1186/s12964-024-01620-y

 

  1. Zhang K, Wang Y, Chen S, et al. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab. 2023;5(1):129-146. doi: 10.1038/s42255-022-00715-5

 

  1. Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: A novel modus of obesity regulation. J Mol Med (Berl). 2021;99(9):1221-1235. doi: 10.1007/s00109-021-02082-2

 

  1. Song L, Jiang W, Lin H, Yu J, Liu K, Zheng R. Post-translational modifications in sepsis-induced organ dysfunction: Mechanisms and implications. Front Immunol. 2024;15:1461051. doi: 10.3389/fimmu.2024.1461051

 

  1. Raymond SL, Holden DC, Mira JC, et al. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt B):2564-2573. doi: 10.1016/j.bbadis.2017.01.013

 

  1. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux- Bacchi V, Roumenina LT. Complement system part II: Role in immunity. Front Immunol. 2015;6:257. doi: 10.3389/fimmu.2015.00257

 

  1. Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest. 2016;126(5):1612-1620. doi: 10.1172/JCI84538

 

  1. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121-137. doi: 10.1038/nrneph.2017.165

 

  1. Islam MM, Watanabe E, Salma U, et al. Immunoadjuvant therapy in the regulation of cell death in sepsis: Recent advances and future directions. Front Immunol. 2024;15:1493214. doi: 10.3389/fimmu.2024.1493214

 

  1. Levi M, Poll T. Coagulation in patients with severe sepsis. Semin Thromb Hemost. 2015;41(1):9-15. doi: 10.1055/s-0034-1398376

 

  1. Kappelmayer J, Debreceni IB, Fejes Z, Nagy B Jr. Inflammation, sepsis, and the coagulation system. Hamostaseologie. 2024;44(4):268-276. doi: 10.1055/a-2202-8544

 

  1. Wei X, Tu Y, Bu S, Guo G, Wang H, Wang Z. Unraveling the intricate web: Complement activation shapes the pathogenesis of sepsis-induced coagulopathy. J Innate Immun. 2024;16(1):337-353. doi: 10.1159/000539502

 

  1. Xiao M, Liu D, Xu Y, Mao W, Li W. Role of PFKFB3-driven glycolysis in sepsis. Ann Med. 2023;55(1):1278-1289. doi: 10.1080/07853890.2023.2191217

 

  1. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5(1):66-72. doi: 10.4161/viru.26907

 

  1. Xl L, Gy Z, Guo R, Cui N. Ferroptosis in sepsis: The mechanism, the role and the therapeutic potential. Front Immunol. 2022;13:956361. doi: 10.3389/fimmu.2022.956361

 

  1. Deng S, Gu B, Yu Z, Shen Z, Ren H. MIR210HG aggravates sepsis-induced inflammatory response of proximal tubular epithelial cell via the NF-κB Signaling pathway. Yonsei Med J. 2021;62(5):461-469. doi: 10.3349/ymj.2021.62.5.461

 

  1. Wu JL, Wu HY, Tsai DY, et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun. 2016;7:12526. doi: 10.1038/ncomms12526

 

  1. Qian Y, Wang Z, Lin H, et al. TRIM47 is a novel endothelial activation factor that aggravates lipopolysaccharide-induced acute lung injury in mice via K63-linked ubiquitination of TRAF2. Signal Transduct Target Ther. 2022;7(1):148. doi: 10.1038/s41392-022-00953-9

 

  1. An S, Yao Y, Hu H, et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 2023;14(7):457. doi: 10.1038/s41419-023-05952-4

 

  1. Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation: Implications in Cancer. Protein J. 2017;36(1):1-6. doi: 10.1007/s10930-017-9696-z

 

  1. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6

 

  1. Lai JL, Liu YH, Liu C, et al. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation. 2017;40(1):1-12. doi: 10.1007/s10753-016-0447-7

 

  1. Zhou X, Zhang L, Lie L, et al. MxA suppresses TAK1-IKKα/ β-NF-κB mediated inflammatory cytokine production to facilitate Mycobacterium tuberculosis infection. J Infect. 2020;81(2):231-241. doi: 10.1016/j.jinf.2020.05.030

 

  1. Yuan M, Jing G, Kong Q, et al. TIPE2 ameliorates neuroinflammation and cognitive impairment in sepsis-associated encephalopathy through regulating RhoA/ ROCK2-NF-κB signaling pathway. Biochem Pharmacol. 2023;217:115816. doi: 10.1016/j.bcp.2023.115816

 

  1. Duan M, Jie J, Li C, et al. Echinatin alleviates sepsis severity through modulation of the NF-κB and MEK/ERK signaling pathways. Biomed Pharmacother. 2024;179:117359. doi: 10.1016/j.biopha.2024.117359

 

  1. Zeng N, Jian Z, Zhu W, Xu J, Fan Y, Xiao F. KLF13 overexpression protects sepsis-induced myocardial injury and LPS-induced inflammation and apoptosis. Int J Exp Pathol. 2023;104(1):23-32. doi: 10.1111/iep.12459

 

  1. Huang X, Zhang MZ, Liu B, Ma SY, Yin X, Guo LH. Astragaloside IV attenuates polymicrobial sepsis-induced cardiac dysfunction in rats via IKK/NF-κB pathway. Chin J Integr Med. 2021;27(11):825-831. doi: 10.1007/s11655-021-2869-9

 

  1. Huang Q, Liu DH, Chen CF, et al. Pgc-1α promotes phosphorylation, inflammation, and apoptosis in H9c2 cells during the early stage of lipopolysaccharide induction. Inflammation. 2021;44(5):1771-1781. doi: 10.1007/s10753-021-01453-8

 

  1. Li H, Liu Z, Wang Y, et al. PARK7 is induced to protect against endotoxic acute kidney injury by suppressing NF-κB. Clin Sci (Lond). 2022;136(24):1877-1891. doi: 10.1042/CS20220493

 

  1. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50-83. doi: 10.1128/MMBR.00031-10

 

  1. Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188736. doi: 10.1016/j.bbcan.2022.188736

 

  1. Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans. 2022;50(5):1341-1352. doi: 10.1042/BST20220271

 

  1. Crawford TQ, Hecht FM, Pilcher CD, Ndhlovu LC, Barbour JD. Activation associated ERK1/2 signaling impairments in CD8+ T cells co-localize with blunted polyclonal and HIV-1 specific effector functions in early untreated HIV-1 infection. PLoS One. 2013;8(10):e77412. doi: 10.1371/journal.pone.0077412

 

  1. Liang D, Zeng Q, Xu Z, et al. BAFF activates Erk1/2 promoting cell proliferation and survival by Ca2+-CaMKII-dependent inhibition of PP2A in normal and neoplastic B-lymphoid cells. Biochem Pharmacol. 2014;87(2):332-343. doi: 10.1016/j.bcp.2013.11.006

 

  1. Feng Z, Li M, Ma A, et al. Intermedin (adrenomedullin 2) plays a protective role in sepsis by regulating T- and B-cell proliferation and activity. Int Immunopharmacol. 2023;121:110488. doi: 10.1016/j.intimp.2023.110488

 

  1. Yuan Y, Hua L, Zhou J, et al. The effect of artesunate to reverse CLP-induced sepsis immunosuppression micewith secondary infection is tightly related to reducing the apoptosis of T cells via decreasing the inhibiting receptors and activating MAPK/ERK pathway. Int Immunopharmacol. 2023;124(Pt A):110917. doi: 10.1016/j.intimp.2023.110917

 

  1. Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells. 2020;9(4):857. doi: 10.3390/cells9040857

 

  1. Zhu H, Zhang L, Jia H, et al. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ ERK signaling pathway regulation. Phytomedicine. 2022;104:154283. doi: 10.1016/j.phymed.2022.154283

 

  1. Ouyang J, Hong Y, Wan Y, et al. PVB exerts anti-inflammatory effects by inhibiting the activation of MAPK and NF-κB signaling pathways and ROS generation in neutrophils. Int Immunopharmacol. 2024;126:111271. doi: 10.1016/j.intimp.2023.111271

 

  1. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38(MAPK): Stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15(8):369-379. doi: 10.1016/j.molmed.2009.06.005

 

  1. Dai M, Sun S, Dai Y, et al. Maresin-1 ameliorates sepsis-induced microglial activation through modulation of the P38 MAPK pathway. Neurochem Res. 2024;50(1):26. doi: 10.1007/s11064-024-04280-z

 

  1. Zhang HF, Zhang HB, Wu XP, Guo YL, Cheng WD, Qian F. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41(10):1348-1356. doi: 10.1038/s41401-020-0462-y

 

  1. Dong R, Xue Z, Fan G, et al. Pin1 promotes NLRP3 inflammasome activation by phosphorylation of p38 MAPK pathway in septic shock. Front Immunol. 2021;12:620238. doi: 10.3389/fimmu.2021.620238

 

  1. Li D, Ren W, Jiang Z, Zhu L. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury. Mol Med Rep. 2018;18(5):4399-4409. doi: 10.3892/mmr.2018.9427

 

  1. Yue L, Liu X, Wu C, et al. Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation. J Bioenerg Biomembr. 2023;55(5):353-363. doi: 10.1007/s10863-023-09972-9

 

  1. Wang Y, Cui C, Zhao W, et al. WIP1-mediated regulation of p38 MAPK signaling attenuates pyroptosis in sepsis-associated acute kidney injury. Immunobiology. 2024;229(5):152832. doi: 10.1016/j.imbio.2024.152832

 

  1. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1-15. doi: 10.1016/j.cytogfr.2016.05.001

 

  1. Lei W, Liu D, Sun M, et al. Targeting STAT3: A crucial modulator of sepsis. J Cell Physiol. 2021;236(11):7814-7831. doi: 10.1002/jcp.30394

 

  1. Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10(4):225-235. doi: 10.1038/nri2735

 

  1. Liu Y, Yang H, Zhu F, Ouyang Y, Pan P. Inhibition of STAT3 phosphorylation by colchicine regulates NLRP3 activation to alleviate sepsis-induced acute lung injury. Inflammopharmacology. 2023;31(4):2007-2021. doi: 10.1007/s10787-023-01199-9

 

  1. Qian T, Qi B, Fei Y, et al. PLD2 deletion alleviates disruption of tight junctions in sepsis-induced ALI by regulating PA/ STAT3 phosphorylation pathway. Int Immunopharmacol. 2023;114:109561. doi: 10.1016/j.intimp.2022.109561

 

  1. Li N, Lin G, Zhang H, et al. Lyn attenuates sepsis-associated acute kidney injury by inhibition of phospho-STAT3 and apoptosis. Biochem Pharmacol. 2023;211:115523. doi: 10.1016/j.bcp.2023.115523

 

  1. Tan Z, Liu Q, Chen H, et al. Pectolinarigenin alleviated septic acute kidney injury via inhibiting Jak2/Stat3 signaling and mitochondria dysfunction. Biomed Pharmacother. 2023;159:114286. doi: 10.1016/j.biopha.2023.114286

 

  1. Xu L, Cai J, Li C, et al. 4-Octyl itaconate attenuates LPS-induced acute kidney injury by activating Nrf2 and inhibiting STAT3 signaling. Mol Med. 2023;29(1):58. doi: 10.1186/s10020-023-00631-8

 

  1. Wang L, Deng Z, Sun Y, et al. The study on the regulation of Th cells by mesenchymal stem cells through the JAK-STAT signaling pathway to protect naturally aged sepsis model rats. Front Immunol. 2022;13:820685. doi: 10.3389/fimmu.2022.820685

 

  1. Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 2015;11(7):1946-1954. doi: 10.1039/c5mb00101c

 

  1. Liu H, Weng XJ, Yao JY, et al. Neuregulin-1 β protects the rat diaphragm during sepsis against oxidative stress andinflammation by activating the PI3K/Akt pathway. Oxid Med Cell Longev. 2020;2020:1720961. doi: 10.1155/2020/1720961

 

  1. Liang LD, Peng HX, Huang MJ, et al. HGF ameliorates cardiomyocyte apoptosis and inflammatory response in sepsis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Gene. 2024;928:148763. doi: 10.1016/j.gene.2024.148763

 

  1. Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-met: A key promoter in liver regeneration. Front Pharmacol. 2022;13:808855. doi: 10.3389/fphar.2022.808855

 

  1. Ziegler AC, Haider RS, Hoffmann C, Gräler MH. S1PR3 agonism and S1P lyase inhibition rescue mice in the severe state of experimental sepsis. Biomed Pharmacother. 2024;174:116575. doi: 10.1016/j.biopha.2024.116575

 

  1. Wang L, Jiang S, Li X, Lin T, Qin T. Astringin protects LPS-induced toxicity by suppressing oxidative stress and inflammation via suppression of PI3K/AKT/NF-κB pathway for pediatric acute lung injury. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(10):2369-2377. doi: 10.1007/s00210-023-02439-z

 

  1. Zheng Y, Li Y, Li S, Hu R, Zhang L. Annexin A1 (Ac2-26)- dependent Fpr2 receptor alleviates sepsis-induced acute kidney injury by inhibiting inflammation and apoptosis in vivo and in vitro. Inflamm Res. 2023;72(2):347-362. doi: 10.1007/s00011-022-01640-9

 

  1. Ng YY, Ho YC, Yen CH, et al. Protective Effect of hibifolin on lipopolysaccharide-induced acute lung injury through akt phosphorylation and NFκB pathway. Environ Toxicol. 2024;40:524-531. doi: 10.1002/tox.24383

 

  1. Tang AL, Li Y, Sun LC, et al. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway. World J Emerg Med. 2024;15(3):206-213. doi: 10.5847/wjem.j.1920-8642.2024.035

 

  1. Kawamura A, Ito A, Takahashi A, Sawamoto A, Okuyama S, Nakajima M. Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide. J Pharmacol Sci. 2024;156(2):125-133. doi: 10.1016/j.jphs.2024.08.001

 

  1. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242-1253. doi: 10.1038/nm.3739

 

  1. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26(4):399-422. doi: 10.1038/cr.2016.39

 

  1. Shao S, Zhou D, Feng J, et al. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne). 2023;14:1124334. doi: 10.3389/fendo.2023.1124334

 

  1. Shim DW, Lee KH. Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome. Front Immunol. 2018;9:1054. doi: 10.3389/fimmu.2018.01054

 

  1. Toldo S, Mezzaroma E, Buckley LF, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther. 2022;236:108053. doi: 10.1016/j.pharmthera.2021.108053

 

  1. Tang J, Tu S, Lin G, et al. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med. 2020;217(4):133674. doi: 10.1084/jem.20182091

 

  1. Wang D, Zhang Y, Xu X, et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27- linked polyubiquitination of NLRP3. Nat Commun. 2021;12(1):2674. doi: 10.1038/s41467-021-22987-3

 

  1. Shen W, Zhang X, Tang M, Chen W, Wang Y, Zhou H. Targeting of ubiquitination and degradation of KLF15 by E3 ubiquitin ligase KBTBD7 regulates LPS-induced septic brain injury in microglia. Exp Cell Res. 2024;443(1):114317. doi: 10.1016/j.yexcr.2024.114317

 

  1. Liu J, Song K, Lin B, et al. The suppression of HSPA8 attenuates NLRP3 ubiquitination through SKP2 to promote pyroptosis in sepsis-induced lung injury. Cell Biosci. 2024;14(1):56 doi: 10.1186/s13578-024-01239-z

 

  1. Xu D, Jiang J, Liu Y, et al. TIMP2 protects against sepsis-associated acute kidney injury by cAMP/NLRP3 axis-mediated pyroptosis. Am J Physiol Cell Physiol. 2024;326(5):C1353-C1366. doi: 10.1152/ajpcell.00577.2023

 

  1. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28(2):591-605. doi: 10.1038/s41418-020-00708-5

 

  1. Wang Y, Chen D, Xie H, et al. AUF1 protects against ferroptosis to alleviate sepsis-induced acute lung injury by regulating NRF2 and ATF3. Cell Mol Life Sci. 2022;79(5):228. doi: 10.1007/s00018-022-04248-8

 

  1. Li Z, Wu B, Chen J, et al. WWP2 protects against sepsis-induced cardiac injury through inhibiting cardiomyocyte ferroptosis. J Transl Int Med. 2024;12(1):35-50. doi: 10.2478/jtim-2024-0004

 

  1. Liao J, Su X, Wang M, et al. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res. 2023;255:50-65. doi: 10.1016/j.trsl.2022.11.006

 

  1. Wang M, Liao J, Lin W, et al. YL-109 attenuates sepsis-associated multiple organ injury through inhibiting the ERK/AP-1 axis and pyroptosis by upregulating CHIP. Biomed Pharmacother. 2024;175:116633. doi: 10.1016/j.biopha.2024.116633

 

  1. Zhao YY, Wu DM, He M, et al. Samotolisib attenuates acute liver injury through inhibiting caspase-11-mediated pyroptosis via regulating E3 ubiquitin ligase Nedd4. Front Pharmacol. 2021;12:726198. doi: 10.3389/fphar.2021.726198

 

  1. Chen Z, Lin B, Yao X, et al. OAS3 deubiquitination due to E3 ligase TRIM21 downregulation promotes epithelial cell apoptosis and drives sepsis-induced acute lung injury. Int J Biol Sci. 2024;20(14):5594-5607. doi: 10.7150/ijbs.96089

 

  1. Ma W, Zheng J, Wu B, Wang M, Kang Z. Regulatory mechanism of TRIM21 in sepsis-induced acute lung injury by promoting IRF1 ubiquitination. Clin Exp Pharmacol Physiol. 2024;51(11):e13911. doi: 10.1111/1440-1681.13911

 

  1. Li O, Ma Q, Li F, Cai GY, Chen XM, Hong Q. Progress of small ubiquitin-related modifiers in kidney diseases. Chin Med J (Engl). 2019;132(4):466-473. doi: 10.1097/CM9.0000000000000094

 

  1. Decque A, Joffre O, Magalhaes JG, et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol. 2016;17(2):140-149. doi: 10.1038/ni.3342

 

  1. Wang G, Yang F, Gao T, Wu D, Huang J, Li J. Effect of deletion of SUMOylation on dendritic cell function in septic mice and its role in sepsis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2020;45(3):314-321. doi: 10.11817/j.issn.1672-7347.2020.190684

 

  1. Qiu P, Liu Y, Zhang J. Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation. 2019;42(1):6-19. doi: 10.1007/s10753-018-0890-8

 

  1. Wang K, Xiong J, Lu Y, Wang L, Tian T. SENP1-KLF4 signalling regulates LPS-induced macrophage M1 polarization. FEBS J. 2023;290(1):209-224. doi: 10.1111/febs.16589

 

  1. Zheng C, Li D, Zhan W, He K, Yang H. Downregulation of SENP1 suppresses LPS-induced macrophage inflammation by elevating Sp3 SUMOylation and disturbing Sp3-NF-κB interaction. Am J Transl Res. 2020;12(11):7439-7448.

 

  1. Liu X, Chen L, Zhang C, et al. Ginkgolic acid promotes inflammation and macrophage apoptosis via SUMOylation and NF-κB pathways in sepsis. Front Med (Lausanne). 2022;9:1108882. doi: 10.3389/fmed.2022.1108882

 

  1. Li X, Li X, Huang P, et al. Acetylation of TIR domains in the TLR4-Mal-MyD88 complex regulates immune responses in sepsis. EMBO J. 2024;43(21):4954-4983. doi: 10.1038/s44318-024-00237-8

 

  1. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-141. doi: 10.1038/s41580-020-00313-x

 

  1. Zeng Z, Lan Y, Chen Y, et al. LncRNA GAS5 suppresses inflammatory responses by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis. Eur J Pharmacol. 2023;942:175520. doi: 10.1016/j.ejphar.2023.175520

 

  1. Zha D, Yang Y, Huang X, et al. Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages. Eur J Pharmacol. 2023;946:175666. doi: 10.1016/j.ejphar.2023.175666

 

  1. He S, Jiang X, Yang J, et al. Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway. Pharm Biol. 2024;62(1):22-32. doi: 10.1080/13880209.2023.2292256

 

  1. Yu B, Weng L, Li J, et al. Inhibiting SIRT2 Attenuates sepsis-induced acute kidney injury via FOXO1 acetylation-mediated autophagy activation. Shock. 2025;63(2):255-266. doi: 10.1097/SHK.0000000000002505

 

  1. Liang S, Zhou J, Cao C, et al. GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol. 2024;21(7):674-688. doi: 10.1038/s41423-024-01170-w

 

  1. Morigi M, Perico L, Benigni A. Sirtuins in renal health and disease. J Am Soc Nephrol. 2018;29(7):1799-1809. doi: 10.1681/ASN.2017111218

 

  1. Gao N, Liu XY, Chen J, Hu TP, Wang Y, Zhang GQ. Menaquinone-4 alleviates sepsis-associated acute lung injury via activating SIRT3-p53/SLC7A11 pathway. J Inflamm Res. 2024;17:7675-7685. doi: 10.2147/JIR.S486984

 

  1. Guo J, Yuan Z, Wang R. Zn2+ improves sepsis-induced acute kidney injury by upregulating SIRT7-mediated parkin acetylation. Am J Physiol Renal Physiol. 2024;327(1):F184-F197. doi: 10.1152/ajprenal.00337.2023

 

  1. Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-580. doi: 10.1038/s41586-019-1678-1

 

  1. Liu S, Yang T, Jiang Q, et al. Lactate and lactylation in sepsis: A comprehensive review. J Inflamm Res. 2024;17:4405-4417. doi: 10.2147/JIR.S459185

 

  1. Wu D, Spencer CB, Ortoga L, Zhang H, Miao C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 2024;74:103194. doi: 10.1016/j.redox.2024.103194

 

  1. Lu Z, Fang P, Li S, et al. Lactylation of histone H3k18 and Egr1 promotes endothelial glycocalyx degradation in sepsis-induced acute lung injury. Adv Sci (Weinh). 2024;12:e2407064. doi: 10.1002/advs.202407064

 

  1. Qiao J, Tan Y, Liu H, et al. Histone H3K18 and ezrin lactylation promote renal dysfunction in sepsis-associated acute kidney injury. Adv Sci (Weinh). 2024;11(28):e2307216. doi: 10.1002/advs.202307216

 

  1. Gong F, Zheng X, Xu W, et al. H3K14la drives endothelial dysfunction in sepsis-induced ARDS by promoting SLC40A1/transferrin-mediated ferroptosis. MedComm (2020). 2025;6(2):e70049. doi: 10.1002/mco2.70049

 

  1. Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29(1):133-146. doi: 10.1038/s41418-021-00841-9

 

  1. Sun Z, Song Y, Li J, Li Y, Yu Y, Wang X. Potential biomarker for diagnosis and therapy of sepsis: Lactylation. Immun Inflamm Dis. 2023;11(10):e1042. doi: 10.1002/iid3.1042

 

  1. Liu Z, Ting Y, Li M, Li Y, Tan Y, Long Y. From immune dysregulation to organ dysfunction: Understanding the enigma of Sepsis. Front Microbiol. 2024;15:1415274. doi: 10.3389/fmicb.2024.1415274

 

  1. Wu X, Xu M, Geng M, et al. Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 2023;8(1):220. doi: 10.1038/s41392-023-01439-y

 

  1. Yang X, Sun J, Sun F, et al. TRIM31 promotes apoptosis via TAK1-mediated activation of NF-κB signaling in sepsis-induced myocardial dysfunction. Cell Cycle. 2020;19(20):2685-2700. doi: 10.1080/15384101.2020.1826235

 

Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing