Big data and systems biology for biomarker discovery in chronic hypersensitivity pneumonitis and drug repurposing using deep learning-based DTI models

Chronic hypersensitivity pneumonitis (CHP) is commonly associated with repeated inhalation of organic dust-containing microbial agents. The identification and mitigation of exposure to these microbes are key steps in managing and preventing CHP. Therefore, to elucidate the pathogenetic mechanisms underlying fibrosis and identify biomarkers for targeted therapeutics, a systems biology approach integrating large-scale microarray data mining and whole-genome RNA-sequencing data is crucial. In this study, systems biology methodologies were employed to construct genome-wide genetic and epigenetic networks for fibrotic lung cells from CHP patients and healthy controls. Protein-protein interaction networks and gene/microRNA/long non-coding RNA regulatory networks were established using RNA sequencing data, followed by refinement through a system identification framework. By applying principal network projection and the Kyoto Encyclopedia of Genes and Genomes pathway annotation, core signaling pathways and their downstream cellular dysfunctions were identified, revealing key signaling pathways, such as the mitogen-activated protein kinase, phosphoinositide 3-kinase, chemokine (C-X-C motif) ligand (CXCL)/CXC chemokine receptors family, and chemokine (C-C motif) ligand (CCL) family signaling pathways. In addition, significant biomarkers of pathogenetic mechanisms of CHP, such as AKT1, CCL20, cell division cycle 23, CXCL1, nuclear factor-kappa B, and tumor necrosis factor, were identified as potential drug targets of CHP. Significant biomarkers associated with cell inhibitors, cellular dysfunction, and cellular disorders were identified as drug targets in the core disease-causing signaling pathways. Finally, using a deep neural network-based drug-target interaction model and drug design specification, three molecular drugs, azathioprine, masitinib, and primaquine, were screened and proposed as candidates for a multiple-molecular drug for the treatment of CHP.
- Selman M, Pardo A, King TE Jr. Hypersensitivity pneumonitis: Insights in diagnosis and pathobiology. Am J Respir Crit Care Med. 2012;186(4):314-324. doi: 10.1164/rccm.201203-0513CI
- Vasakova M, Morell F, Walsh S, Leslie K, Raghu G. Hypersensitivity pneumonitis: Perspectives in diagnosis and management. Am J Respir Crit Care Med. 2017;196(6):680-689. doi: 10.1164/rccm.201611-2201PP
- Costabel U, Miyazaki Y, Pardo A, et al. Hypersensitivity pneumonitis. Nat Rev Dis Primers. 2020;6(1):65. doi: 10.1038/s41572-020-0191-z
- Gaxiola M, Buendía-Roldán I, Mejía M, et al. Morphologic diversity of chronic pigeon breeder’s disease: Clinical features and survival. Respir Med. 2011;105(4):608-614. doi: 10.1016/j.rmed.2010.11.026
- Patel AM, Ryu JH, Reed CE. Hypersensitivity pneumonitis: Current concepts and future questions. J Allergy Clin Immunol. 2001;108(5):661-670. doi: 10.1067/mai.2001.119570
- Yeh SJ, Chen BS. Systems medicine design based on systems biology approaches and deep neural network for gastric cancer. IEEE/ACM Trans Comput Biol Bioinform. 2022;19(5):3019-3031. doi: 10.1109/tcbb.2021.3095369
- Wingender E, Chen X, Hehl R, et al. TRANSFAC: An integrated system for gene expression regulation. Nucleic Acids Res. 2000;28(1):316-319. doi: 10.1093/nar/28.1.316
- Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006;34(suppl_1):D535-D539. doi: 10.1093/nar/gkj109
- Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32(suppl_1):D449-D451. doi: 10.1093/nar/gkh086
- Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G. MINT: A molecular INTeraction database. FEBS Lett. 2002;513(1):135-140. doi: 10.1016/s0014-5793(01)03293-8
- Orchard S, Ammari M, Aranda B, et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42(D1):D358-D363. doi: 10.1093/nar/gkt1115
- Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi: 10.7554/eLife.05005
- Bovolenta L, Acencio M, Lemke N. HTRIdb: An open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics. 2012;13:405. doi: 10.1186/1471-2164-13-405
- Zheng G, Tu K, Yang Q, et al. ITFP: An integrated platform of mammalian transcription factors. Bioinformatics. 2008;24(20):2416-2417. doi: 10.1093/bioinformatics/btn439
- Friard O, Re A, Taverna D, De Bortoli M, Corá D. CircuitsDB: A database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics. 2010;11(1):435. doi: 10.1186/1471-2105-11-435
- Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein- RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):D92-D97. doi: 10.1093/nar/gkt1248
- Chen BS, Wu CC. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells. 2013;2(4):635-688. doi: 10.3390/cells2040635
- Yeh SJ, Chen SW, Chen BS. Investigation of the genome-wide genetic and epigenetic networks for drug discovery based on systems biology approaches in colorectal cancer. Front Genet. 2020;11:117. doi: 10.3389/fgene.2020.00117
- Chang S, Wang LH, Chen BS. Investigating core signaling pathways of hepatitis B virus pathogenesis for biomarkers identification and drug discovery via systems biology and deep learning method. Biomedicines. 2020;8(9):320. doi: 10.3390/biomedicines8090320
- Sakamoto Y, Ishiguro M, Kitagawa G. Akaike Information Criterion Statistics. Vol. 81. Dordrecht, The Netherlands: D Reidel. 1986. p. 26853.
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506-D515. doi: 10.1093/nar/gky1049
- Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011;39:D1035-D1041. doi: 10.1093/nar/gkq1126
- Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-D1213. doi: 10.1093/nar/gkv951
- Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35:D198-D201. doi: 10.1093/nar/gkl999
- Ting CT, Chen BS. Repurposing multiple-molecule drugs for COVID-19-associated acute respiratory distress syndrome and non-viral acute respiratory distress syndrome via a systems biology approach and a DNN-DTI model based on five drug design specifications. Int J Mol Sci. 2022;23(7):3649. doi: 10.3390/ijms23073649
- Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049
- Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5-W14. doi: 10.1093/nar/gkab255
- Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev. 2012;92(2):689-737. doi: 10.1152/physrev.00028.2011
- Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med. 2000;6(6):698-702. doi: 10.1038/76282
- Kumar S, Boehm J, Lee JC. p38 MAP kinases: Key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2(9):717-726. doi: 10.1038/nrd1177
- Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773(8):1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
- Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3(1):39-50. doi: 10.1016/1074-7613(95)90157-4
- Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal. 2011;23(10):1515-1527. doi: 10.1016/j.cellsig.2011.05.004
- Morley SJ, Naegele S. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem. 2002;277(36):32855- 32859. doi: 10.1074/jbc.C200376200
- Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279-3290. doi: 10.1038/sj.onc.1210421
- Liu Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213-217. doi: 10.1038/sj.ki.5000054
- Jaffe AB, Hall A. Rho GTPases in transformation and metastasis. Adv Cancer Res. 2002;84:57-80. doi: 10.1016/s0065-230x(02)84003-9
- Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep. 2003;4(8):800-806. doi: 10.1038/sj.embor.embor899
- Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911-1912. doi: 10.1126/science.1072682
- Duronio V. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008;415(3):333-344. doi: 10.1042/bj20081056
- Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370(6488):341-347. doi: 10.1038/370341a0
- Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19(23):2783-2810. doi: 10.1101/gad.1350705
- Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 2012;11(10):790-811. doi: 10.1038/nrd3810
- Zhang L, Zhou F, ten Dijke P. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci. 2013;38(12):612-620. doi: 10.1016/j.tibs.2013.10.001
- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 2010;11(5):373-384. doi: 10.1038/ni.1863
- Polivka J Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164-175. doi: 10.1016/j.pharmthera.2013.12.004
- Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45-65. doi: 10.1038/sj.cdd.4401189
- Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149-160. doi: 10.1002/path.2287
- Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A. 1998;95(2):570-575. doi: 10.1073/pnas.95.2.570
- Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81(4):495-504. doi: 10.1016/0092-8674(95)90070-5
- Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332-336. doi: 10.1126/science.1172308
- Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120(Pt 15):2479-2487. doi: 10.1242/jcs.001222
- Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell. 1996;87(4):619-628. doi: 10.1016/s0092-8674(00)81382-3
- O’Neill KL, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30(8):973-988. doi: 10.1101/gad.276725.115
- Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29(2):95-102. doi: 10.1016/j.tibs.2003.12.004
- Newton AC. Protein kinase C: Poised to signal. Am J Physiol Endocrinol Metab. 2010;298(3):E395-E402. doi: 10.1152/ajpendo.00477.2009
- Creamer TP. Calcineurin. Cell Commun Signal. 2020;18(1):137. doi: 10.1186/s12964-020-00636-4
- Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997;9(2):240-246. doi: 10.1016/s0955-0674(97)80068-3
- Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339-1350. doi: 10.1084/jem.20110551
- Liu J, Lin A. Role of JNK activationn in apoptosis: A double-edged sword. Cell Res. 2005;15(1):36-42. doi: 10.1038/sj.cr.7290262
- Garcia-Garcia T, Poncet S, Derouiche A, Shi L, Mijakovic I, Noirot-Gros MF. Role of protein phosphorylation in the regulation of cell cycle and DNA-related processes in bacteria. Front Microbiol. 2016;7:184. doi: 10.3389/fmicb.2016.00184
- Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: More than just a road to PKB. Biochem J. 2000; 346(Pt 3):561-576.
- Peters JM. The anaphase promoting complex/cyclosome: A machine designed to destroy. Nat Rev Mol Cell Biol. 2006;7(9):644-656. doi: 10.1038/nrm1988
- Lubischer J. The cell cycle, principles of control. David O. Morgan. Integr Comp Biol. 2007;47: 794-795. doi: 10.1093/icb/icm066
- Shen T, Huang S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 2012;12(6):631-639. doi: 10.2174/187152012800617678
- Van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta. 2008;1786(1):49-59. doi: 10.1016/j.bbcan.2008.05.002
- Bacon KB, Schall TJ. Chemokines as mediators of allergic inflammation. Int Arch Allergy Immunol. 1996;109(2):97-109. doi: 10.1159/000237207
- Shaw M, Collins BF, Ho LA, Raghu G. Rheumatoid arthritis-associated lung disease. Eur Respir Rev. 2015;24(135):1-6. doi: 10.1183/09059180.00008014
- Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8(4):345-350. doi: 10.1038/ni0407-345
- Smith KA. Interleukin-2: Inception, impact, and implications. Science. 1988;240(4856):1169-1176. doi: 10.1126/science.3131876
- Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610-621. doi: 10.1056/NEJMra052723
- Sariban E, Imamura K, Luebbers R, Kufe D. Transcriptional and posttranscriptional regulation of tumor necrosis factor gene expression in human monocytes. J Clin Invest. 1988;81(5):1506-1510. doi: 10.1172/jci113482
- Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348-2357.
- Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238(1):247-262. doi: 10.1111/j.1600-065X.2010.00951.x
- Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18(12):773-789. doi: 10.1038/s41577-018-0066-7
- Lee AY, Eri R, Lyons AB, Grimm MC, Korner H. CC chemokine ligand 20 and its cognate receptor CCR6 in mucosal T cell immunology and inflammatory bowel disease: Odd couple or axis of evil? Front Immunol. 2013;4:194. doi: 10.3389/fimmu.2013.00194
- Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163-189. doi: 10.1189/jlb.0603252
- Arora P, Verma G, Chauhan M, Ahuja A. Atypical protean manifestations of cutaneous sarcoidosis. Indian J Dermatol. 2022;67(1):87-89. doi: 10.4103/ijd.ijd_379_21
- Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA. 1993;90(21):10188-10192. doi: 10.1073/pnas.90.21.10188
- Wan YY. GATA3: A master of many trades in immune regulation. Trends Immunol. 2014;35(6):233-242. doi: 10.1016/j.it.2014.04.002
- Grünig G, Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282(5397):2261-2263. doi: 10.1126/science.282.5397.2261
- Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: Central mediator of allergic asthma. Science. 1998;282(5397):2258-2261. doi: 10.1126/science.282.5397.2258
- Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583-594. doi: 10.1038/nri1412
- Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776-787. doi: 10.1038/nri2402
- Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/ JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788-824. doi: 10.1164/rccm.2009-040GL
- NHS. Azathioprine: A Medicine for Conditions Affecting the Immune system. Available from: https://www.nhs.uk/ medicines/azathioprine [Last accessed on 2025 Mar 27].
- Anvar MT, Rashidan K, Arsam N, et al. Th17 cell function in cancers: Immunosuppressive agents or anti-tumor allies? Cancer Cell Int. 2024;24:355. doi: 10.1186/s12935-024-03525-9
- Oldham JM, Lee C, Valenzi E, et al. Azathioprine response in patients with fibrotic connective tissue disease-associated interstitial lung disease. Respir Med. 2016;121:117-122. doi: 10.1016/j.rmed.2016.11.007
- Morisset J, Johannson KA, Vittinghoff E, et al. Mycophenolate mofetil and azathioprine in chronic hypersensitivity pneumonitis. Eur Respir J. 2016;48(Suppl 60):PA3885. doi: 10.1183/13993003.congress-2016.PA3885
- Alberti ML, Rincon-Alvarez E, Buendia-Roldan I, Selman M. Hypersensitivity pneumonitis: Diagnostic and therapeutic challenges. Front Med (Lausanne). 2021;8:718299. doi: 10.3389/fmed.2021.718299