Diversity of human papillomavirus-16 L1 in the Asian region: A comparative analysis of sequences

Human papillomavirus (HPV) infection is a leading cause of several cancers, with types 16 and 18 classified as high-risk. This study investigates the L1 capsid protein of HPV16, a crucial target for Food Drug and Administration-approved vaccines, by analyzing its nucleic acid and amino acid sequences to identify phylogenetic relationships, sequence variations, and conserved functional elements. The study utilizes sequences obtained from the National Center for Biotechnology Information virus database to assess geographical clustering and evolutionary trends. Key regions, including structural loops, nuclear localization signals, and viral attachment sites, were examined for variability. Phylogenetic analysis demonstrated distinct clustering patterns, particularly among sequences from Japan and Pakistan, indicating potential regional influences on HPV-16 evolution. Despite observed sequence variability, critical residues essential for viral entry remained conserved, suggesting evolutionary constraints on functionally significant domains. These findings offer insights into HPV-16 diversity in Asia and highlight the importance of continuous genomic surveillance for vaccine development and epidemiological assessments.
- World Health Organization (WHO). Sexually Transmitted Infections (STIs). Available from: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections- (stis) [Last accessed on 2023 Nov 28].
- The Papillomavirus Episteme. Available from: https://pave. niaid.nih.gov/index [Last accessed on 2023 Nov 23].
- Nelson CW, Mirabello L. Human papillomavirus genomics: Understanding carcinogenicity. Tumour Virus Res. 2023;15:200258. doi: 10.1016/j.tvr.2023.200258
- International Agency for Research on Cancer (IARC). List of Classifications. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available from: https:// monographs.iarc.who.int/list-of-classifications [Last accessed on 2023 Nov 28].
- Bruni L, Albero G, Serrano B, et al. Human Papillo-mavirus and Related Diseases in the World. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre); 2023. Available from: https://hpvcentre.net [Last accessed on 2023 Nov 28].
- Goetschius DJ, Hartmann SR, Subramanian S, Bator CM, Christensen ND, Hafenstein SL. High resolution Cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility. Sci Rep. 2021;11:3498. doi: 10.1038/s41598-021-83076-5
- Kajitani N, Schwartz S. Role of viral ribonucleoproteins in human papillomavirus type 16 gene expression. Viruses. 2020;12(10):1110. doi: 10.3390/v12101110
- Pešut E, Đukić A, Lulić L, et al. Human papillomaviruses-associated cancers: An update of current knowledge. Viruses. 2021;13(11):2234. doi: 10.3390/v13112234
- El Aliani A, El Abid H, Kassal Y, et al. HPV16 L1 diversity and its potential impact on the vaccination-induced immunity. Gene. 2020;747:144682. doi: 10.1016/j.gene.2020.144682
- Arroyo Mühr LS, Lagheden C, Hassan SS, Eklund C, Dillner J. The international human papillomavirus reference center: Standardization, collaboration, and quality assurance in HPV research and diagnostics. J Med Virol. 2023;95(12):e29332. doi: 10.1002/jmv.29332
- Cosper PF, Bradley S, Luo L, Kimple RJ. Biology of HPV mediated carcinogenesis and tumor progression. Semin Radiat Oncol. 2021;31(4):265-273. doi: 10.1016/j.semradonc.2021.02.006
- Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5:557-567. doi: 10.1016/s1097-2765(00)80449-9
- Liu X, Chen J, Wang Z, et al. Neutralization sites of human papillomavirus-6 relate to virus attachment and entry phase in viral infection. Emerg Microbes Infect. 2019;8:1721-1733. doi: 10.1080/22221751.2019.1694396
- Mukherjee AG, Wanjari UR, Gopalakrishnan AV, et al. Exploring the molecular pathogenesis, pathogen association, and therapeutic strategies against HPV infection. Pathogens. 2022;12(1):25. doi: 10.3390/pathogens12010025
- Bissett SL, Godi A, Beddows S. The DE and FG loops of the HPV major capsid protein contribute to the epitopes of vaccine-induced cross-neutralizing antibodies. Sci Rep. 2016;6:39730. doi: 10.1038/srep39730
- Food and Drug Administration. Cervarix (Human Papillomavirus Bivalent [Types 16 and 18 Vaccine, Recombinant): Pre-scribing Information [Package Insert]. US Department of Health and Human Services, Food and Drug Administration; 2016. Available from: https://www.fda.gov/ media/78013/download [Last accessed on 2023 Nov 23].
- Food and Drug Administration. Gardasil (Human Papillomavirus Quadrivalent [Types 6, 11, 16, and 18 Vaccine, Recombinant): Prescribing Information [Package Insert]. US Department of Health and Human Services, Food and Drug Administration; 2015. Available from: https://www.fda.gov/ media/74350/download [Last accessed on 2023 Nov 23].
- Food and Drug Administration. Gardasil 9 (Human Papillomavirus 9-Valent Vaccine, Recombinant): Prescribing Information [Package Insert]. US Department of Health and Human Services, Food and Drug Administration; 2018. Available from: https://www.fda.gov/media/90064/ download [Last accessed on 2023 Nov 23].
- Markowitz LE, Schiller JT. Human papillomavirus vaccines. J Infect Dis. 2021;224:S367-S378. doi: 10.1093/infdis/jiaa621
- Cheng L, Wang Y, Du J. Human papillomavirus vaccines: An updated review. Vaccines (Basel). 2020;8(3):391. doi: 10.3390/vaccines8030391
- Akhatova A, Azizan A, Atageldiyeva K, et al. Prophylactic human papillomavirus vaccination: From the origin to the current state. Vaccines (Basel). 2022;10:1912. doi: 10.3390/vaccines10111912
- Schoch CL, Ciufo S, Domrachev M, et al. NCBI taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062. doi: 10.1093/database/baaa062
- NCBI Virus. Bethesda, MD: National Library of Medicine (US), National Center for Biotechnology Information; 2004. Available from: https://www.ncbi.nlm.nih.gov/labs/virus/ vssi/#/virus?viruslineage_ss=viruses,taxid:10239&seqtype_ s=nucleotide [Last accessed on 2024 Oct 28].
- Toparslan E, Karabağ K, Bilge U. A workflow with R: Phylogenetic analyses and visualizations using mitochondrial cytochrome b gene sequences. PLoS One. 2020;15(12):e0243927. doi: 10.1371/journal.pone.0243927
- Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992;89:10915-10919. doi: 10.1073/pnas.89.22.10915
- Zhou J, Doorbar J, Sun XY, Crawford LV, McLean CS, Frazer IH. Identification of the nuclear localization signal of human papillomavirus type 16 L1 protein. Virology. 1991;185:625-632. doi: 10.1016/0042-6822(91)90533-h
- Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas MA Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog. 2021;17(5):e1009580. doi: 10.1371/journal.ppat.1009580
- National Center for Biotechnology Information (NCBI). Available from: https://www.ncbi.nlm.nih.gov [Last accessed on 2024 Dec 08].
- Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105-132. doi: 10.1016/0022-2836(82)90515-0