AccScience Publishing / MI / Online First / DOI: 10.36922/mi.4790
PERSPECTIVE ARTICLE

Unraveling complex interactions between microbiota and immune system

Mannat Mittal1 Shreya Juneja1 Rahul Mittal1*
Show Less
1 Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
Submitted: 6 September 2024 | Revised: 8 November 2024 | Accepted: 25 November 2024 | Published: 20 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The intricate relationship between the gut microbiota and the immune system has garnered significant attention in recent years, revealing a complex interplay essential for maintaining health and preventing disease. This perspective article delves into the dynamic interactions between the gut microbiota and the immune system, exploring how microbial communities influence immune development, function, and homeostasis. Emerging research highlights the impact of microbial metabolites, signaling pathways, and host genetics on immune responses. We also address the implications of microbiota-immune interactions in various diseases, including autoimmune disorders, infections, and cancer. Unraveling these complex interactions may provide a comprehensive understanding of the microbiota-immune system axis and its potential for guiding new therapeutic interventions. This article emphasizes the need for interdisciplinary approaches and advanced technologies to further elucidate the mechanisms underpinning this critical biological partnership.

Keywords
Gut microbiota
Immune system
Diet
Signaling pathways
Funding
None.
Conflict of interest
Rahul Mittal is the Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018;26(7):563-574. doi: 10.1016/j.tim.2017.11.002

 

  1. Schmidt TS, Raes J, Bork P. The human gut microbiome: From association to modulation. Cell. 2018;172(6):1198-1215. doi: 10.1016/j.cell.2018.02.044

 

  1. Parizadeh M, Arrieta MC. The global human gut microbiome: Genes, lifestyles, and diet. Trends Mol Med. 2023;29(10):789-801. doi: 10.1016/j.molmed.2023.07.002

 

  1. Corbin KD, Carnero EA, Dirks B, et al. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nat Commun. 2023;14(1):3161. doi: 10.1038/s41467-023-38778-x

 

  1. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563. doi: 10.1038/nature12820

 

  1. Dong TS, Luu K, Lagishetty V, et al. A high protein calorie restriction diet alters the gut microbiome in obesity. Nutrients. 2020;12(10):3221. doi: 10.3390/nu12103221

 

  1. Li H, Zhang L, Li J, et al. Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat Metab. 2024;6(3):578-597. doi: 10.1038/s42255-024-00988-y

 

  1. Mohr AE, Sweazea KL, Bowes DA, et al. Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nat Commun. 2024;15(1):4155. doi: 10.1038/s41467-024-48355-5

 

  1. San Mauro Martín I, López Oliva S, Garicano Vilar E, et al. Effects of gluten on gut microbiota in patients with gastrointestinal disorders, migraine, and dermatitis. Nutrients. 2024;16(8):1228. doi: 10.3390/nu16081228

 

  1. Fu J, Zheng Y, Gao Y, Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms. 2022;10(12):2507. doi: 10.3390/microorganisms10122507

 

  1. De Filippis F, Paparo L, Nocerino R, et al. Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance. Nat Commun. 2021;12(1):5958. doi: 10.1038/s41467-021-26266-z

 

  1. Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20-40. doi: 10.1084/jem.20180448

 

  1. Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat Rev Immunol. 2024;24(8):577-595. doi: 10.1038/s41577-024-01014-8

 

  1. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4-14. doi: 10.4161/gmic.19320

 

  1. Wu M, Zheng W, Song X, et al. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell. 2024;187(4):897-913.e18. doi: 10.1016/j.cell.2023.12.036

 

  1. Boncheva I, Poudrier J, Falcone EL. Role of the intestinal microbiota in host defense against respiratory viral infections. Curr Opin Virol. 2024;66:101410. doi: 10.1016/j.coviro.2024.101410

 

  1. Eshraghi RS, Deth RC, Mittal R, et al. Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: Implications for the rise in autism. Front Cell Neurosci. 2018;12:256. doi: 10.3389/fncel.2018.00256

 

  1. Zeng Y, Guo M, Wu Q, et al. Gut microbiota-derived indole-3-propionic acid alleviates diabetic kidney disease through its mitochondrial protective effect via reducing ubiquitination mediated-degradation of SIRT1. J Adv Res. 2024. doi: 10.1016/j.jare.2024.08.018

 

  1. Eshraghi RS, Davies C, Iyengar R, Perez L, Mittal R, Eshraghi AA. Gut-induced inflammation during development may compromise the blood-brain barrier and predispose to autism spectrum disorder. J Clin Med. 2020;10(1):27. doi: 10.3390/jcm10010027

 

  1. Bongers KS, Chanderraj R, Woods RJ, et al. The gut microbiome modulates body temperature both in sepsis and health. Am J Respir Crit Care Med. 2023;207(8):1030-1041. doi: 10.1164/rccm.202201-0161OC

 

  1. Li N, Tan G, Xie Z, et al. Distinct enterotypes and dysbiosis: Unraveling gut microbiota in pulmonary and critical care medicine inpatients. Respir Res. 202425(1):304. doi: 10.1186/s12931-024-02943-7

 

  1. Wiefels MD, Furar E, Eshraghi RS, et al. Targeting gut dysbiosis and microbiome metabolites for the development of therapeutic modalities for neurological disorders. Curr Neuropharmacol. 2024;22(1):123-139. doi: 10.2174/1570159X20666221003085508

 

  1. Kigerl KA, Hall JC, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med. 2016;213(12):2603-2620. doi: 10.1084/jem.20151345

 

  1. Winter SE, Bäumler AJ. Gut dysbiosis: Ecological causes and causative effects on human disease. Proc Natl Acad Sci U S A. 2023;120:e2316579120. doi: 10.1073/pnas.2316579120

 

  1. Azad MB, Konya T, Maughan H, et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol. 2013;9(1):15. doi: 10.1186/1710-1492-9-15

 

  1. Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. doi: 10.1371/journal.pone.0137429

 

  1. Wang Z, Yuan X, Zhu Z, et al. Multiomics analyses reveal microbiome-gut-brain crosstalk centered on aberrant gamma-aminobutyric acid and tryptophan metabolism in drug-naïve patients with first-episode schizophrenia. Schizophr Bull. 2024;50(1):187-198. doi: 10.1093/schbul/sbad026. Erratum in: Schizophr Bull. 2024;50(1):231. doi: 10.1093/schbul/sbad077

 

  1. Ma X, Asif H, Dai L, et al. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J Psychiatr Res. 2020;123:136-144. doi: 10.1016/j.jpsychires.2020.02.005

 

  1. Zeng L, Yang K, He Q, et al. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: A systematic review and meta-analysis of 80 randomized controlled trials. BMC Med. 2024;22(1):110. doi: 10.1186/s12916-024-03303-4

 

  1. Wang X, Yuan W, Yang C, et al. Emerging role of gut microbiota in autoimmune diseases. Front Immunol. 2024;15:1365554. doi: 10.3389/fimmu.2024.1365554

 

  1. Zheng M, Ye H, Yang X, et al. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun. 2024;115:565-587. doi: 10.1016/j.bbi.2023.11.016

 

  1. Karakula-Juchnowicz H, Rog J, Juchnowicz D, et al. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): A 12-week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr J. 2019;18(1):50. doi: 10.1186/s12937-019-0475-x

 

  1. Aragona SE, Spada C, DE Luca L, Aragona E, Ciprandi G; COLONSTUDY Study Group. Probiotics for managing patients after bowel preparation for colonoscopy: An interventional, double-arm, open, randomized, multi-center, and national study (COLONSTUDY). Minerva Gastroenterol (Torino). 2024;70(2):187-196. doi: 10.23736/S2724-5985.24.03630-1

 

  1. Ouyang Q, Xu Y, Ban Y, et al. Probiotics and prebiotics in subclinical hypothyroidism of pregnancy with small intestinal bacterial overgrowth. Probiotics Antimicrob Proteins. 2024;16(2):579-588. doi: 10.1007/s12602-023-10068-4

 

  1. Xue L, Deng Z, Luo W, He X, Chen Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front Cell Infect Microbiol. 2022;12:759306. doi: 10.3389/fcimb.2022.759306

 

  1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148(6):1258-1270. doi: 10.1016/j.cell.2012.01.035

 

  1. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LM. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021;13(3):886. doi: 10.3390/nu13030886

 

  1. Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294-307. doi: 10.1097/MPG.0000000000000597

 

  1. Ames SR, Lotoski LC, Azad MB. Comparing early life nutritional sources and human milk feeding practices: Personalized and dynamic nutrition supports infant gut microbiome development and immune system maturation. Gut Microbes. 2023;15(1):2190305. doi: 10.1080/19490976.2023.2190305

 

  1. Schulkers Escalante K, Bai-Tong SS, Allard SM, et al. The impact of breastfeeding on the preterm infant’s microbiome and metabolome: A pilot study. Pediatr Res. 2024. doi: 10.1038/s41390-024-03440-9.

 

  1. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016;16(1):86. doi: 10.1186/s12876-016-0498-0

 

  1. Yu L, Guo Y, Wu JL. Influence of mode of delivery on infant gut microbiota composition: A pilot study. J Obstet Gynaecol. 2024;44(1):2368829. doi: 10.1080/01443615.2024.2368829

 

  1. Mueller NT, Differding MK, Østbye T, Hoyo C, Benjamin- Neelon SE. Association of birth mode of delivery with infant faecal microbiota, potential pathobionts, and short chain fatty acids: A longitudinal study over the first year of life. BJOG. 2021;128(8):1293-1303. doi: 10.1111/1471-0528.16633

 

  1. Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol. 2023;14:1291724. doi: 10.3389/fmicb.2023.1291724

 

  1. Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866-877. doi: 10.1038/s41423-021-00661-4

 

  1. Nagano Y, Itoh K, Honda K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol. 2012;24(4):392-397. doi: 10.1016/j.coi.2012.05.007

 

  1. Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome dependent regulation of Tregs and Th17 cells in mucosa. Front Immunol. 2019;10:426. doi: 10.3389/fimmu.2019.00426

 

  1. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450. doi: 10.1038/nature12721

 

  1. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-455. doi: 10.1038/nature12726

 

  1. Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457. doi: 10.1038/s41467-020-18262-6

 

  1. Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 2018;9(1):3555. doi: 10.1038/s41467-018-05901-2

 

  1. Hu L, Sun L, Yang C, et al. Gut microbiota-derived acetate attenuates lung injury induced by influenza infection via protecting airway tight junctions. J Transl Med. 2024;22(1):570. doi: 10.1186/s12967-024-05376-4

 

  1. Mörbe UM, Jørgensen PB, Fenton TM, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793-802. doi: 10.1038/s41385-021-00389-4

 

  1. Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: A microbiota-driven hub of B cell immunity. Trends Immunol. 2024;45(3):211-223. doi: 10.1016/j.it.2024.01.006

 

  1. Pabst O, Nowosad CR. B cells and the intestinal microbiome in time, space and place. Semin Immunol. 2023;69:101806. doi: 10.1016/j.smim.2023.101806

 

  1. Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol. 2013;190(4):1389-1395. doi: 10.4049/jimmunol.1203100

 

  1. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506. doi: 10.1038/s41422-020-0332-7

 

  1. Lee YK, Mehrabian P, Boyajian S, et al. The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. mSphere. 2018;3(6). doi: 10.1128/mSphere.00587-18

 

  1. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107-118. doi: 10.1016/j.cell.2005.05.007

 

  1. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620-625. doi: 10.1038/nature07008

 

  1. Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun. 2019;10(1):2153. doi: 10.1038/s41467-019-09884-6

 

  1. Sun S, Luo L, Liang W, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci U S A. 2020;117(44):27509-27515. doi: 10.1073/pnas.1921223117

 

  1. Vogel K, Arra A, Lingel H, et al. Bifidobacteria shape antimicrobial T-helper cell responses during infancy and adulthood. Nat Commun. 2023;14(1):5943. doi: 10.1038/s41467-023-41630-x

 

  1. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell. 2021;184(15):3884-3898.e11. doi: 10.1016/j.cell.2021.05.030

 

  1. Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. 2012;55(3):321-327. doi: 10.1097/MPG.0b013e31824fb899

 

  1. Abdulqadir R, Engers J, Al-Sadi R. Role of Bifidobacterium in modulating the intestinal epithelial tight junction barrier: Current knowledge and perspectives. Curr Dev Nutr. 2023;7(12):102026. doi: 10.1016/j.cdnut.2023.102026

 

  1. Ling X, Linglong P, Weixia D, Hong W. Protective effects of Bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One. 2016;11(8):e0161635. doi: 10.1371/journal.pone.0161635

 

  1. Martín R, Rios-Covian D, Huillet E, et al. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol Rev. 2023;47(4):fuad039. doi: 10.1093/femsre/fuad039

 

  1. Touch S, Godefroy E, Rolhion N, et al. Human CD4+CD8α+ Tregs induced by Faecalibacterium prausnitzii protect against intestinal inflammation. JCI Insight. 2022;7(12):e154722. doi: 10.1172/jci.insight.154722

 

  1. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731-16736. doi: 10.1073/pnas.0804812105

 

  1. Coccia C, Bonomi F, Lo Cricchio A, et al. The potential role of butyrate in the pathogenesis and treatment of autoimmune rheumatic diseases. Biomedicines. 2024;12(8):1760. doi: 10.3390/biomedicines12081760

 

  1. Siddiqui MT, Cresci GA. The Immunomodulatory functions of butyrate. J Inflamm Res. 2021;14:6025-6041. doi: 10.2147/JIR.S300989

 

  1. Aziz T, Hussain N, Hameed Z, Lin L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. Gut Microbes. 2024;16(1):2297864. doi: 10.1080/19490976.2023.2297864

 

  1. Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The role of diet and gut microbiota in regulating gastrointestinal and inflammatory disease. Front Immunol. 2022;13:866059. doi: 10.3389/fimmu.2022.866059

 

  1. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. doi: 10.1186/s12967-017-1175-y

 

  1. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern Emerg Med. 2024;19(2):275-293. doi: 10.1007/s11739-023-03374-w

 

  1. Chakaroun RM, Massier L, Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: Perpetrators or bystanders? Nutrients. 2020;12(4):1082. doi: 10.3390/nu12041082

 

  1. Costabile A, Klinder A, Fava F, et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99(1):110-120. doi: 10.1017/S0007114507793923

 

  1. Carvalho-Wells AL, Helmolz K, Nodet C, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: A human feeding study. Br J Nutr. 2010;104(9):1353-6. doi: 10.1017/S0007114510002084

 

  1. Liu Z, Lin X, Huang G, Zhang W, Rao P, Ni L. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe. 2014;26:1-6. doi: 10.1016/j.anaerobe.2013.11.007

 

  1. Santacroce L, Bottalico L, Charitos IA, Haxhirexha K, Topi S, Jirillo E. Healthy diets and lifestyles in the world: Mediterranean and blue zone people live longer. Special focus on gut microbiota and some food components. Endocr Metab Immune Disord Drug Targets. 2024;24(15):1774-1784. doi: 10.2174/0118715303271634240319054728

 

  1. Nash V, Ranadheera CS, Georgousopoulou EN, et al. The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Food Res Int. 2018;113:277-287. doi: 10.1016/j.foodres.2018.07.019

 

  1. Lee C, Lee J, Eor JY, Kwak MJ, Huh CS, Kim Y. Effect of consumption of animal products on the gut microbiome composition and gut health. Food Sci Anim Resour. 2023;43(5):723-750. doi: 10.5851/kosfa.2023.e44

 

  1. Li DP, Cui M, Tan F, Liu XY, Yao P. High red meat intake exacerbates dextran sulfate-induced colitis by altering gut microbiota in mice. Front Nutr. 2021;8:646819. doi: 10.3389/fnut.2021.646819

 

  1. Al-Shaar L, Satija A, Wang DD, et al. Red meat intake and risk of coronary heart disease among US men: Prospective cohort study. BMJ. 2020;371:m4141. doi: 10.1136/bmj.m4141

 

  1. Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented foods, health and the gut microbiome. Nutrients. 2022;14(7):1527. doi: 10.3390/nu14071527

 

  1. An SY, Lee MS, Jeon JY, et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab. 2013;63(1-2):111-119. doi: 10.1159/000353583

 

  1. Han K, Bose S, Wang JH, et al. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol Nutr Food Res. 2015;59(5):1004-1008. doi: 10.1002/mnfr.201400780

 

  1. Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 2019;11(8):1806. doi: 10.3390/nu11081806

 

  1. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789-799. doi: 10.1016/j.cell.2014.09.053

 

  1. Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes. 2022;14(1):2022407. doi: 10.1080/19490976.2021.2022407

 

  1. Xiao F, Rui K, Shi X, et al. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol. 2022;19(11):1215-1234. doi: 10.1038/s41423-022-00933-7

 

  1. Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet. 2022;8(1):dvac001. doi: 10.1093/eep/dvac001

 

  1. Scheithauer TP, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731. doi: 10.3389/fimmu.2020.571731

 

  1. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-288. doi: 10.4161/gmic.19625

 

  1. Xu H, Liu M, Cao J, et al. The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res. 2019;2019:7546047. doi: 10.1155/2019/7546047

 

  1. Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: Human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci. 2019;28:105-110. doi: 10.1016/j.cobeha.2019.01.011

 

  1. Monda V, Villano I, Messina A, et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017;2017:3831972. doi: 10.1155/2017/3831972

 

  1. Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez-Guardado I. Examining the interaction between exercise, gut microbiota, and neurodegeneration: Future research directions. Biomedicines. 2023;11(8):2267. doi: 10.3390/biomedicines11082267

 

  1. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003. doi: 10.1038/npjbiofilms.2016.3

 

  1. Joly C, Gay-Quéheillard J, Léké A, et al. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. Environ Sci Pollut Res Int. 2013;20(5):2726-2734. doi: 10.1007/s11356-012-1283-4

 

  1. Reygner J, Joly Condette C, Bruneau A, et al. Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME® model. Int J Environ Res Public Health. 2016;13(11):1088. doi: 10.3390/ijerph13111088

 

  1. Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: Frenemies within the gut. Front Public Health. 2024;12:1285186. doi: 10.3389/fpubh.2024.1285186

 

  1. Gensollen T, Blumberg RS. Correlation between early-life regulation of the immune system by microbiota and allergy development. J Allergy Clin Immunol. 2017;139(4):1084-1091. doi: 10.1016/j.jaci.2017.02.011

 

  1. Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity. 2022;55(9):1530-1548. doi: 10.1016/j.immuni.2022.08.005

 

  1. Yip JL, Balasuriya GK, Spencer SJ, Hill-Yardin EL. The role of intestinal macrophages in gastrointestinal homeostasis: Heterogeneity and implications in disease. Cell Mol Gastroenterol Hepatol. 2021;12(5):1701-1718. doi: 10.1016/j.jcmgh.2021.08.021

 

  1. Wu K, Yuan Y, Yu H, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood. 2020;136(4):501-515. doi: 10.1182/blood.2019003990

 

  1. Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol. 2023;13(3):230014. doi: 10.1098/rsob.230014

 

  1. Shin Y, Han S, Kwon J, et al. Roles of short-chain fatty acids in inflammatory bowel disease. Nutrients. 2023;15(20):4466. doi: 10.3390/nu15204466

 

  1. Ma J, Piao X, Mahfuz S, Long S, Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim Nutr. 2021;9:159-174. doi: 10.1016/j.aninu.2021.09.012

 

  1. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277

 

  1. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015;16(2):164-177. doi: 10.15252/embr.201439263

 

  1. Johansson ME, Jakobsson HE, Holmén-Larsson J, et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015;18(5):582-592. doi: 10.1016/j.chom.2015.10.007

 

  1. Yang X, Liu D, Zhao X, et al. Hyperuricemia drives intestinal barrier dysfunction by regulating gut microbiota. Heliyon. 2024;10(16):e36024. doi: 10.1016/j.heliyon.2024.e36024

 

  1. Macpherson AJ, McCoy KD. Independence day for IgA. Immunity. 2015;43(3):416-418. doi: 10.1016/j.immuni.2015.08.024

 

  1. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585-600. doi: 10.1038/nri3707

 

  1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-141. doi: 10.1016/j.cell.2014.03.011

 

  1. Toor D, Wsson MK, Kumar P, et al. Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases. Int J Mol Sci. 2019;20(10):2432. doi: 10.3390/ijms20102432

 

  1. Lee J, Song X, Hyun B, Jeon CO, Hyun S. Drosophila gut immune pathway suppresses host development-promoting effects of acetic acid bacteria. Mol Cells. 2023;46(10):637-653. doi: 10.14348/molcells.2023.0141

 

  1. Kim G, Chen Z, Li J, et al. Gut-liver axis calibrates intestinal stem cell fitness. Cell. 2024;187(4):914-930.e20. doi: 10.1016/j.cell.2024.01.001

 

  1. Lei Y, Tang L, Chen Q, et al. Disulfiram ameliorates nonalcoholic steatohepatitis by modulating the gut microbiota and bile acid metabolism. Nat Commun. 2022;13(1):6862. doi: 10.1038/s41467-022-34671-1

 

  1. Kuang J, Wang J, Li Y, et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 2023;35(10):1752-1766.e8. doi: 10.1016/j.cmet.2023.07.011

 

  1. Mittal R, Debs LH, Patel AP, et al. Neurotransmitters: The critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232(9):2359-2237. doi: 10.1002/jcp.25518

 

  1. Loh JS, Mak WQ, Tan LK, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther. 2024;9(1):37. doi: 10.1038/s41392-024-01743-1

 

  1. Zhang L, Wei J, Liu X, et al. Gut microbiota-astrocyte axis: New insights into age-related cognitive decline. Neural Regen Res. 2025;20(4):990-1008. doi: 10.4103/NRR.NRR-D-23-01776

 

  1. Davies C, Mishra D, Eshraghi RS, et al. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci Biobehav Rev. 2021;128:549-557. doi: 10.1016/j.neubiorev.2021.07.001

 

  1. Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: Consequences for neurodegeneration. Front Cell Infect Microbiol. 2024;14:1348279. doi: 10.3389/fcimb.2024.1348279

 

  1. Rubert J, Schweiger PJ, Mattivi F, Tuohy K, Jensen KB, Lunardi A. Intestinal organoids: A tool for modelling diet-microbiome-host interactions. Trends Endocrinol Metab. 2020;31(11):848-858. doi: 10.1016/j.tem.2020.02.004

 

  1. Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis. 2021;15(7):1222-1235. doi: 10.1093/ecco-jcc/jjaa257

 

  1. McCoy R, Oldroyd S, Yang W, et al. In vitro models for investigating intestinal host-pathogen interactions. Adv Sci (Weinh). 2024;11(8):e2306727. doi: 10.1002/advs.202306727

 

  1. Osbelt L, Almási ÉD, Wende M, et al. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat Microbiol. 2024;9(7):1792-1811. doi: 10.1038/s41564-024-01710-0

 

  1. Colombo AV, Sadler RK, Llovera G, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. Elife. 2021;10:e59826. doi: 10.7554/eLife.59826

 

  1. Segal JP, Mullish BH, Quraishi MN, et al. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap Adv Gastroenterol. 2019;12:1756284818822250. doi: 10.1177/1756284818822250

 

  1. Wu J, Singleton SS, Bhuiyan U, Krammer L, Mazumder R. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci. 2024;10:1337373. doi: 10.3389/fmolb.2023.1337373
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing