iPSC-mediated genetic manipulation promotes natural killer cell-centered cancer immunotherapy
Natural killer (NK) cells demonstrate potent cytotoxic activities and the capacity to secrete cytokines. Their distinctive capability to trigger cell death, bypassing the need for major histocompatibility complex recognition, opens promising avenues for their use in clinical settings such as allogeneic transplantation and tumor immunotherapy. Although the ability of NK cells to kill hematological tumors has been widely recognized, their effectiveness in treating solid tumors is not as pronounced. The intricate interplay of NK cells with the tumor microenvironment, specifically in the context of solid malignancies, has been noted to attenuate the anti-cancer prowess of NK cells and foster the ability of malignant cells to elude immune surveillance. Successful NK cell-centered immunotherapy hinges on obtaining a substantial quantity of NK cells with potent tumor-killing capabilities. However, the current challenge lies in the limited ex vivo expansion of NK cells and the inefficiency of gene introduction methods. Induced pluripotent stem cells (iPSCs) are multipotent stem cells with relatively easier gene transfection capability and theoretically unlimited proliferation potential. NK cells derived from iPSCs circumvent the challenge of difficult genetic modification in NK cells, offering various potential strategies to counteract the immune suppression induced by the tumor microenvironment.
- Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity. 1995;3(4):459-473. doi: 10.1016/1074-7613(95)90175-2
- Nagasawa M, Spits H, Ros XR. Innate lymphoid cells (ILCs): Cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb Perspect Biol. 2018;10(12):a030304. doi: 10.1101/cshperspect.a030304
- Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975;16(2):230-239. doi: 10.1002/ijc.2910160205
- Kiessling R, Klein E, Pross H, Wigzell H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975;5(2):117-121. doi: 10.1002/eji.1830050209
- Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461-469. doi: 10.1182/blood-2007-09-077438
- Freud AG, Yu J, Caligiuri MA. Human natural killer cell development in secondary lymphoid tissues. Semin Immunol. 2014;26(2):132-137. doi: 10.1016/j.smim.2014.02.008
- Holmes ML, Huntington ND, Thong RP, et al. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J. 2014;33(22):2721-2734. doi: 10.15252/embj.201487900
- Ritz J, Schmidt RE, Michon J, Hercend T, Schlossman SF. Characterization of functional surface structures on human natural killer cells. Adv Immunol. 1988;42:181-211. doi: 10.1016/s0065-2776(08)60845-7
- Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136(12):4480-4486. doi: 10.4049/jimmunol.136.12.4480
- Tripathy SK, Keyel PA, Yang L, et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J Exp Med. 2008;205(8):1829-1841. doi: 10.1084/jem.20072446
- Lanier LL, Yu G, Phillips JH. Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature. 1989;342(6251):803-805. doi: 10.1038/342803a0
- Isturiz MA, Geffner JR, Pizzolato MA. Two different Fc gamma receptor-dependent cytotoxic mechanisms triggered by monoclonal immunoglobulins. Immunol Lett. 1991;29(3):271-275. doi: 10.1016/0165-2478(91)90182-a
- Tarek N, Le Luduec JB, Gallagher MM, et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. 2012;122(9):3260-3270. doi: 10.1172/JCI62749
- Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675-678. doi: 10.1038/319675a0
- Kim S, Poursine-Laurent J, Truscott SM, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature. 2005;436(7051):709-713. doi: 10.1038/nature03847
- Yu J, Heller G, Chewning J, Kim S, Yokoyama WM, Hsu KC. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J Immunol. 2007;179(9):5977-5989. doi: 10.4049/jimmunol.179.9.5977
- Anfossi N, André P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25(2):331-342. doi: 10.1016/j.immuni.2006.06.013
- Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A. 1996;93(22):12445-12450. doi: 10.1073/pnas.93.22.12445
- Nahi H, Chrobok M, Meinke S, et al. Autologous NK cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep Med. 2022;3(2):100508. doi: 10.1016/j.xcrm.2022.100508
- Martínez-Sánchez MV, Fuster JL, Campillo JA, et al. Expression of NK cell receptor ligands on leukemic cells is associated with the outcome of childhood acute leukemia. Cancers. 2021;13(10):2294. doi: 10.3390/cancers13102294
- Xue Z, Gao Y, Wu X. Anti-Relapse effects of donor natural killer cells and IL-2 gene modification on allogeneic hematopoietic stem cell transplantation in acute leukemia. Cancer Biomark. 2020;29(2):207-219. doi: 10.3233/cbm-191296
- Yano M, Sharpe C, Lance JR, et al. Evaluation of allogeneic and autologous membrane-bound IL-21-expanded NK cells for chronic lymphocytic leukemia therapy. Blood Adv. 2022;6(20):5641-5654. doi: 10.1182/bloodadvances.2021005883
- Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097-2100. doi: 10.1126/science.1068440
- Cai L, Zhang Z, Zhou L, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol. 2008;129(3):428-437. doi: 10.1016/j.clim.2008.08.012
- Fathy A, Eldin MM, Metwally L, Eida M, Abdel-Rehim M. Diminished absolute counts of CD56dim and CD56bright natural killer cells in peripheral blood from Egyptian patients with hepatocellular carcinoma. Egypt J Immunol. 2009;16(2):17-25.
- Estrella V, Chen T, Lloyd M, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524-1535. doi: 10.1158/0008-5472.Can-12-2796
- Bhandari V, Hoey C, Liu LY, et al. Molecular landmarks of tumor hypoxia across cancer types. Nature Genet. 2019;51(2):308-318. doi: 10.1038/s41588-018-0318-2
- Zheng X, Qian Y, Fu B, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat Immunol. 2019;20(12):1656-1667. doi: 10.1038/s41590-019-0511-1
- Xu L, Shen M, Chen X, et al. In vitro-induced M2 type macrophages induces the resistance of prostate cancer cells to cytotoxic action of NK cells. Exp Cell Res. 2018;364(1):113-123. doi: 10.1016/j.yexcr.2018.01.041
- Crane CA, Austgen K, Haberthur K, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci. 2014;111(35):12823-12828. doi: 10.1073/pnas.1413933111
- Gao Y, Souza-Fonseca-Guimaraes F, Bald T, et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 2017;18(9):1004-1015. doi: 10.1038/ni.3800
- Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010-4017. doi: 10.1158/0008-5472.CAN-08-3712
- Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553. doi: 10.1056/NEJMoa1910607
- Yu M, Luo H, Fan M, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther. 2018;26(2):366-378. doi: 10.1016/j.ymthe.2017.12.012
- Hesslein DG, Lanier LL. Transcriptional control of natural killer cell development and function. Adv Immunol. 2011;109:45-85. doi: 10.1016/B978-0-12-387664-5.00002-9
- Deng Y, Kerdiles Y, Chu J, et al. Transcription factor foxo1 is a negative regulator of natural killer cell maturation and function. Immunity. 2015;42(3):457-470. doi: 10.1016/j.immuni.2015.02.006
- Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018;19(7):723-732. doi: 10.1038/s41590-018-0132-0
- Sutlu T, Nystrom S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy. Hum Gene Ther. 2012;23(10):1090-1100. doi: 10.1089/hum.2012.080
- Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545-2554. doi: 10.1056/NEJMoa1708566
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi: 10.1016/j.cell.2006.07.024
- Zhu H, Kaufman DS. An Improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. Methods Mol Biol. 2019;2048:107-119. doi: 10.1007/978-1-4939-9728-2_12
- Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood. 2023;141(8):846-855. doi: 10.1182/blood.2022016205
- Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol. 2002;20:323-370. doi: 10.1146/annurev.immunol.20.100201.131730
- Rosenberg J, Huang J. CD8+ T Cells and NK cells: Parallel and complementary soldiers of immunotherapy. Curr Opin Chem Eng. 2018;19:9-20. doi: 10.1016/j.coche.2017.11.006
- Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014;44(6):1582-1592. doi: 10.1002/eji.201344272
- Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology. 2011;133(3):350-359. doi: 10.1111/j.1365-2567.2011.03446.x
- Rezaeifard S, Talei A, Shariat M, Erfani N. Tumor infiltrating NK cell (TINK) subsets and functional molecules in patients with breast cancer. Mol Immunol. 2021;136:161-167. doi: 10.1016/j.molimm.2021.03.003
- Jin J, Fu B, Mei X, et al. CD11b(-)CD27(-) NK cells are associated with the progression of lung carcinoma. PLoS One. 2013;8(4):e61024. doi: 10.1371/journal.pone.0061024
- Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT. TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol. 2010;12(1):7-13. doi: 10.1093/neuonc/nop009
- Brownlie D, Doughty-Shenton D, Yh Soong D, et al. Metastasis-associated macrophages constrain antitumor capability of natural killer cells in the metastatic site at least partially by membrane bound transforming growth factor β. J Immunother Cancer. 2021;9(1):e001740. doi: 10.1136/jitc-2020-001740
- Donatelli SS, Zhou JM, Gilvary DL, et al. TGF-beta-inducible microRNA-183 silences tumor-associated natural killer cells. Proc Natl Acad Sci U S A. 2014;111(11):4203-4208. doi: 10.1073/pnas.1319269111
- Lee YS, Choi H, Cho HR, et al. Downregulation of NKG2DLs by TGF-beta in human lung cancer cells. BMC Immunol. 2021;22(1):44. doi: 10.1186/s12865-021-00434-8
- Bai X, Jing L, Li Y, et al. TMEPAI inhibits TGF-β signaling by promoting lysosome degradation of TGF-β receptor and contributes to lung cancer development. Cell Signal. 2014;26(9):2030-2039. doi: 10.1016/j.cellsig.2014.06.001
- Song P, Fan K, Tian X, Wen J. Bisphenol S (BPS) triggers the migration of human non-small cell lung cancer cells via upregulation of TGF-β. Toxicol In Vitro. 2019;54:224-231. doi: 10.1016/j.tiv.2018.10.005
- Chen W, Zhang Y, Fang Z, Qi W, Xu Y. TRIM66 hastens the malignant progression of non-small cell lung cancer via modulating MMP9-mediated TGF-β/SMAD pathway. Cytokine. 2022;153:155831. doi: 10.1016/j.cyto.2022.155831
- Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002;195(3):335-341. doi: 10.1084/jem.20010934
- Carbone E, Terrazzano G, Ruggiero G, et al. Recognition of autologous dendritic cells by human NK cells. Eur J Immunol. 1999;29(12):4022-4029. doi: 10.1002/(SICI)1521-4141(199912)29:12<4022:AID-IMMU4022>3.0.CO;2-O
- Russick J, Joubert PE, Gillard-Bocquet M, et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J Immunother Cancer. 2020;8(2):e001054. doi: 10.1136/jitc-2020-001054
- Starnes T, Rasila KK, Robertson MJ, et al. The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: Implications for the downregulation of CXCL14 in malignancy. Exp Hematol. 2006;34(8):1101-1105. doi: 10.1016/j.exphem.2006.05.015
- Wang H, Nan S, Wang Y, Xu C. CDX2 enhances natural killer cell-mediated immunotherapy against head and neck squamous cell carcinoma through up-regulating CXCL14. J Cell Mol Med. 2021;25(10):4596-4607. doi: 10.1111/jcmm.16253
- Tejchman A, Lamerant-Fayel N, Jacquinet JC, et al. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization. Oncotarget. 2017;8(19):31876-31887. doi: 10.18632/oncotarget.16311
- Memmer S, Weil S, Beyer S, et al. The stalk domain of NKp30 contributes to ligand binding and signaling of a preassembled NKp30-CD3ζ complex. J Biol Chem. 2016;291(49):25427-25438. doi: 10.1074/jbc.M116.742981
- Fauriat C, Just-Landi S, Mallet F, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 2007;109(1):323-330. doi: 10.1182/blood-2005-08-027979
- Wang W, Guo H, Geng J, et al. Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem. 2014;289(48):33311-33319. doi: 10.1074/jbc.M114.603464
- Nieto-Velázquez NG, Torres-Ramos YD, Muñoz- Sánchez JL, et al. Altered expression of natural cytotoxicity receptors and NKG2D on peripheral blood NK Cell subsets in breast cancer patients. Transl Oncol. 2016;9(5):384-391. doi: 10.1016/j.tranon.2016.07.003
- Krijgsman D, Roelands J, Andersen MN, et al. Expression of NK cell receptor ligands in primary colorectal cancer tissue in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. Mol Immunol. 2020;128:205-218. doi: 10.1016/j.molimm.2020.10.012
- Binici J, Hartmann J, Herrmann J, et al. A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30 receptor-dependent cytotoxicity of natural killer cells. J Biol Chem. 2013;288(48):34295-34303. doi: 10.1074/jbc.M113.483602
- Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2002;17(1):19-29. doi: 10.1016/s1074-7613(02)00333-3
- Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285(5428):730-732. doi: 10.1126/science.285.5428.730
- Lee MJ, Leong MW, Rustagi A, et al. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D. Cell Rep. 2022;41(13):111892. doi: 10.1016/j.celrep.2022.111892
- Huang X, Mo Q, Fu T, Liu Y, Diao B. STAT1 is associated with NK cell dysfunction by downregulating NKG2D transcription in chronic HBV-infected patients. Immunobiology. 2022;227(6):152272. doi: 10.1016/j.imbio.2022.152272
- Cadoux M, Caruso S, Pham S, et al. Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness. J Hepatol. 2021;74(6):1386-1397. doi: 10.1016/j.jhep.2021.01.017
- Chu PS, Nakamoto N, Taniki N, et al. On-treatment decrease of NKG2D correlates to early emergence of clinically evident hepatocellular carcinoma after interferon-free therapy for chronic hepatitis C. PLoS One. 2017;12(6):e0179096. doi: 10.1371/journal.pone.0179096
- Sha WH, Zeng XH, Min L. The correlation between NK cell and liver function in patients with primary hepatocellular carcinoma. Gut Liver. 2014;8(3):298-305. doi: 10.5009/gnl.2014.8.3.298
- Fang X, Guo L, Xing Z, et al. IDO1 can impair NK cells function against non-small cell lung cancer by downregulation of NKG2D Ligand via ADAM10. Pharmacol Res. 2022;177:106132. doi: 10.1016/j.phrs.2022.106132
- Schilling D, Tetzlaff F, Konrad S, Li W, Multhoff G. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress Chaperones. 2015;20(1):139-147. doi: 10.1007/s12192-014-0532-5
- Ou ZL, Luo Z, Wei W, Liang S, Gao TL, Lu YB. Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/ miR-153 axis. RNA Biol. 2019;16(11):1592-1603. doi: 10.1080/15476286.2019.1649585
- Garrido F, Algarra I, Garcia-Lora AM. The escape of cancer from T lymphocytes: Immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol Immunother. 2010;59(10):1601-1606. doi: 10.1007/s00262-010-0893-2
- Derre L, Corvaisier M, Charreau B, et al. Expression and release of HLA-E by melanoma cells and melanocytes: Potential impact on the response of cytotoxic effector cells. J Immunol. 2006;177(5):3100-3107. doi: 10.4049/jimmunol.177.5.3100
- Paul P, Rouas-Freiss N, Khalil-Daher I, et al. HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A. 1998;95(8):4510-4515. doi: 10.1073/pnas.95.8.4510
- Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol. 2020;108(4):1361-1368. doi: 10.1002/JLB.4MR0620-091R
- Wu Y, Kuang DM, Pan WD, et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology. 2013;57(3):1107-1116. doi: 10.1002/hep.26192
- Müller-Durovic B, Lanna A, Covre LP, Mills RS, Henson SM, Akbar AN. Killer cell lectin-like receptor G1 inhibits NK cell function through activation of adenosine 5’-monophosphate-activated protein kinase. J Immunol. 2016;197(7):2891-2899. doi: 10.4049/jimmunol.1600590
- Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N. Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med. 2006;203(2):289-295. doi: 10.1084/jem.20051986
- Lou C, Wu K, Shi J, Dai Z, Xu Q. N-cadherin protects oral cancer cells from NK cell killing in the circulation by inducing NK cell functional exhaustion via the KLRG1 receptor. J Immunother Cancer. 2022;10(9):e005061. doi: 10.1136/jitc-2022-005061
- Xu B, Ma R, Russell L, et al. An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat Biotechnol. 2018; 37:45-54. doi: 10.1038/nbt.4302
- Zhang B, Zhao W, Li H, et al. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother. 2016;65(3):305-314. doi: 10.1007/s00262-016-1799-4
- Liu ZY, Deng L, Jia Y, et al. CD155/TIGIT signalling plays a vital role in the regulation of bone marrow mesenchymal stem cell-induced natural killer-cell exhaustion in multiple myeloma. Clin Transl Med. 2022;12(7):e861. doi: 10.1002/ctm2.861
- Sarhan D, Cichocki F, Zhang B, et al. Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells. Cancer Res. 2016;76(19):5696-5706. doi: 10.1158/0008-5472.CAN-16-0839
- Solomon BL, Garrido-Laguna I. TIGIT: A novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018;67(11):1659-1667. doi: 10.1007/s00262-018-2246-5
- Myers JA, Schirm D, Bendzick L, et al. Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion. JCI Insight. 2022;7(15):e50079. doi: 10.1172/jci.insight.150079
- Vodyanik MA, Slukvin, II. Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol. 2007;Chapter 23:Unit 23 6. doi: 10.1002/0471143030.cb2306s36
- Lupo KB, Moon JI, Chambers AM, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy. 2021;23(10):939-952. doi: 10.1016/j.jcyt.2021.05.001
- Euchner J, Sprissler J, Cathomen T, et al. Natural killer cells generated from human induced pluripotent stem cells mature to CD56brightCD16+NKp80+/- in-vitro and express KIR2DL2/ DL3 and KIR3DL1. Front Immunol. 2021;12:640672. doi: 10.3389/fimmu.2021.640672
- Feng Q, Zhang MY, Lu SJ. Abstract LB-071: Functional NK cells generated from human iPS cells with 3D-bioreactor for immuno-oncology. Cancer Res. 2019;79(13_ Supplement):LB-071. doi: 10.1158/1538-7445.Am2019-lb-071
- Pende D, Falco M, Vitale M, et al. Killer Ig-like receptors (KIRs): Their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019;10:1179. doi: 10.3389/fimmu.2019.01179
- Wang W, Erbe AK, Alderson KA, et al. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion. Cancer Immunol Immunother. 2016;65(9):1047-1059. doi: 10.1007/s00262-016-1864-z
- Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930. doi: 10.3389/fimmu.2017.00930
- Goldenson BH, Zhu H, Wang YM, et al. Umbilical cord blood and iPSC-derived natural killer cells demonstrate key differences in cytotoxic activity and KIR profiles. Front Immunol. 2020;11:561553. doi: 10.3389/fimmu.2020.561553
- Chen AP, Gao P, Ashok P, et al. 323TALEN based gene edited iPSC-derived NK (iNK) cells demonstrate enhanced antitumor activity. J Immunother Cancer. 2022;10(Suppl 2):A339. doi: 10.1136/jitc-2022-SITC2022.0323
- Kwon D, Moon BK, Han M, Lee TW, Lee JH, Kang KS. Abstract 1330: Universal and potent chimeric antigen receptor- natural killer (upCAR-NK) cells for B-cell malignancy treatment. Cancer Res. 2024;84(6_Supplement):1330. doi: 10.1158/1538-7445.Am2024-1330
- Bachanova V, Cayci Z, Lewis D, et al. Initial clinical activity of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/ refractory B-cell lymphoma. Blood. 2020;136(Supplement 1):8. doi: 10.1182/blood-2020-141606
- Ramachandran I, Rothman S, Clausi M, et al. Multiple doses of Cnty-101, an iPSC-derived allogeneic CD19 targeting CAR-NK product, are safe and result in tumor microenvironment changes associated with response: A case study. Blood. 2023;142(Supplement 1):1654-1654. doi: 10.1182/blood-2023-182313
- Cichocki F, Bjordahl R, Gaidarova S, et al. iPSC-derived NK cells and anti-PD-1 antibody synergize to enhance T Cell cytokine and cytolytic responses against multiple tumors. Blood. 2018;132(Supplement 1):730. doi: 10.1182/blood-2018-99-114893
- Hong D, Patel S, Patel M, et al. 380 Preliminary results of an ongoing phase I trial of FT500, a first-in-class, off-the-shelf, induced pluripotent stem cell (iPSC) derived natural killer (NK) cell therapy in advanced solid tumors. J Immunother Cancer. 2020;8(Suppl 3):A231-A232. doi: 10.1136/jitc-2020-SITC2020.0380
- Patel K, Bachanova V, Goodman AM, et al. Phase I study of FT516, an off-the-shelf iPSC-derived NK cell therapy, in combination with rituximab in patients with relapsed/refractory B-Cell lymphoma. Blood. 2021;138(Supplement 1):3873. doi: 10.1182/blood-2021-151520
- Xu Y, Liu Q, Zhong M, et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J Hematol Oncol. 2019;12(1):49. doi: 10.1186/s13045-019-0732-7
- Topfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J Immunol. 2015;194(7):3201-3012. doi: 10.4049/jimmunol.1400330
- Xiao L, Cen D, Gan H, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019;27(6):1114-1125. doi: 10.1016/j.ymthe.2019.03.011
- Leivas A, Valeri A, Cordoba L, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021;11(8):146. doi: 10.1038/s41408-021-00537-w
- Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-531. doi: 10.1038/leu.2017.226
- Luanpitpong S, Poohadsuan J, Klaihmon P, Issaragrisil S. Selective cytotoxicity of single and dual anti-CD19 and anti-CD138 chimeric antigen receptor-natural killer cells against hematologic malignancies. J Immunol Res. 2021;2021:5562630. doi: 10.1155/2021/5562630
- Portillo AL, Hogg R, Poznanski SM, et al. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience. 2021;24(6):102619. doi: 10.1016/j.isci.2021.102619
- Chen SW, Hung YS, Fuh JL, et al. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Reports. 2021;16(5):1363-1380. doi: 10.1016/j.stemcr.2021.03.010
- Guo R, Hu F, Weng Q, et al. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 2020;30(1):21-33. doi: 10.1038/s41422-019-0251-7
- Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019;19(3):184-197. doi: 10.1038/s41577-019-0125-8
- Piwarski SA, Thompson C, Chaudhry AR, et al. The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells. Biochem Pharmacol. 2020;174:113845. doi: 10.1016/j.bcp.2020.113845
- Hezaveh K, Shinde RS, Klötgen A, et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 2022;55(2):324-340.e8. doi: 10.1016/j.immuni.2022.01.006
- Shin JH, Zhang L, Murillo-Sauca O, et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. 2013;110(30):12391-12396. doi: 10.1073/pnas.1302856110
- Trikha P, Moseman JE, Thakkar A, et al. Defining the AHR-regulated transcriptome in NK cells reveals gene expression programs relevant to development and function. Blood Adv. 2021;5(22):4605-4618. doi: 10.1182/bloodadvances.2021004533
- Moreno-Nieves UY, Mundy DC, Shin JH, Tam K, Sunwoo JB. The aryl hydrocarbon receptor modulates the function of human CD56bright NK cells. Eur J Immunol. 2018;48(5):771-776. doi: 10.1002/eji.201747289
- Zhang LH, Shin JH, Haggadone MD, Sunwoo JB. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J Exp Med. 2016;213(11):2249-2257. doi: 10.1084/jem.20151998
- Galley HF, Lowe PR, Carmichael RL, Webster NR. Genotype and interleukin-10 responses after cardiopulmonary bypass. Br J Anaesth. 2003;91(3):424-426. doi: 10.1093/bja/aeg174
- Wagage S, John B, Krock BL, et al. The aryl hydrocarbon receptor promotes IL-10 production by NK cells. J Immunol. 2014;192(4):1661-1670. doi: 10.4049/jimmunol.1300497
- Scoville SD, Nalin AP, Chen L, et al. Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 2018;132(17):1792-1804. doi: 10.1182/blood-2018-03-838474
- Gabriely G, Wheeler MA, Takenaka MC, Quintana FJ. Role of AHR and HIF-1alpha in glioblastoma metabolism. Trends Endocrinol Metab. 2017;28(6):428-436. doi: 10.1016/j.tem.2017.02.009
- Daussy C, Faure F, Mayol K, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 2014;211(3):563-577. doi: 10.1084/jem.20131560
- Zhang J, Marotel M, Fauteux-Daniel S, et al. T-bet and eomes govern differentiation and function of mouse and human NK cells and ILC1. Eur J Immunol. 2018;48(5):738-750. doi: 10.1002/eji.201747299
- Kiekens L, Van Loocke W, Taveirne S, et al. T-BET and EOMES accelerate and enhance functional differentiation of human natural killer cells. Front Immunol. 2021;12:732511. doi: 10.3389/fimmu.2021.732511
- Kremer V, Ligtenberg MA, Zendehdel R, et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer. 2017;5(1):73. doi: 10.1186/s40425-017-0275-9
- Bianchi ME, Mezzapelle R. The chemokine receptor CXCR4 in cell proliferation and tissue regeneration. Front Immunol. 2020;11:2109. doi: 10.3389/fimmu.2020.02109
- Shi Y, Riese DJ 2nd, Shen J. The role of the CXCL12/CXCR4/ CXCR7 chemokine axis in cancer. Front Pharmacol. 2020; 11:574667. doi: 10.3389/fphar.2020.574667
- Muller N, Michen S, Tietze S, et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1alpha-secreting glioblastoma. J Immunother. 2015;38(5):197-210. doi: 10.1097/CJI.0000000000000082
- Wirthmueller U, Kurosaki T, Murakami MS, Ravetch JV. Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain. J Exp Med. 1992;175(5):1381-1390. doi: 10.1084/jem.175.5.1381
- Barry WE, Jackson JR, Asuelime GE, et al. Activated natural killer cells in combination with anti-GD2 antibody dinutuximab improve survival of mice after surgical resection of primary neuroblastoma. Clin Cancer Res. 2019;25(1):325-333. doi: 10.1158/1078-0432.CCR-18-1317
- Modak S, Le Luduec JB, Cheung IY, et al. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study. Oncoimmunology. 2018;7(8):e1461305. doi: 10.1080/2162402X.2018.1461305
- Zhu H, Blum RH, Bjordahl R, et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 2020;135(6):399-410. doi: 10.1182/blood.2019000621
- Pattali R, Izzo K, Goncz E, et al. 191 GAPDH knock-in of high affinity CD16 in iPSC derived NK cells drives high-level expression and increased anti-tumor function. J Immunother Cancer. 2021;9(Suppl 2):A203. doi: 10.1136/jitc-2021-SITC2021.191
- Hullsiek R, Li Y, Snyder KM, et al. Examination of IgG Fc receptor CD16A and CD64 expression by canine leukocytes and their ADCC activity in engineered NK cells. Front Immunol. 2022;13:841859. doi: 10.3389/fimmu.2022.841859
- Snyder KM, Hullsiek R, Mishra HK, et al. Expression of a recombinant high affinity IgG Fc receptor by engineered NK cells as a docking platform for therapeutic mAbs to target cancer cells. Front Immunol. 2018;9:2873. doi: 10.3389/fimmu.2018.02873
- Jing Y, Ni Z, Wu J, et al. Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One. 2015;10(3):e0121788. doi: 10.1371/journal.pone.0121788
- Srpan K, Ambrose A, Karampatzakis A, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217(9):3267-3283. doi: 10.1083/jcb.201712085
- Wagner JA, Rosario M, Romee R, et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017;127(11):4042-4058. doi: 10.1172/JCI90387
- Wu Z, Xu Y. IL-15Rα-IgG1-Fc enhances IL-2 and IL-15 anti-tumor action through NK and CD8+ T cells proliferation and activation. J Mol Cell Biol. 2010;2(4):217-222. doi: 10.1093/jmcb/mjq012
- Kobayashi H, Carrasquillo JA, Paik CH, Waldmann TA, Tagaya Y. Differences of biodistribution, pharmacokinetics, and tumor targeting between interleukins 2 and 15. Cancer Res. 2000;60(13):3577-3583.
- Fujii R, Jochems C, Tritsch SR, Wong HC, Schlom J, Hodge JW. An IL-15 superagonist/IL-15Ralpha fusion complex protects and rescues NK cell-cytotoxic function from TGF-beta1-mediated immunosuppression. Cancer Immunol Immunother. 2018;67(4):675-689. doi: 10.1007/s00262-018-2121-4
- Lee TT, Li YE, Bjordahl R, et al. Abstract 3574: Cytokine-autonomous, CAR-directed, off-the-shelf natural killer cells derived from a clonal engineered master pluripotent cell line. Cancer Res. 2018;78(13_Supplement):3574. doi: 10.1158/1538-7445.AM2018-3574
- Cubitt CC, McClain E, Becker-Hapak M, et al. A novel fusion protein scaffold 18/12/TxM activates the IL-12, IL-15, and IL-18 receptors to induce human memory-like natural killer cells. Mol Ther Oncolytics. 2022;24:585-596. doi: 10.1016/j.omto.2022.02.009
- Zhu H, Blum RH, Bernareggi D, et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell. 2020;27(2):224-237.e6. doi: 10.1016/j.stem.2020.05.008
- Hanna J, Wald O, Goldman-Wohl D, et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood. 2003;102(5):1569-1577. doi: 10.1182/blood-2003-02-0517
- Barlic J, McDermott DH, Merrell MN, Gonzales J, Via LE, Murphy PM. Interleukin (IL)-15 and IL-2 reciprocally regulate expression of the chemokine receptor CX3CR1 through selective NFAT1- and NFAT2-dependent mechanisms. J Biol Chem. 2004;279(47):48520-48534. doi: 10.1074/jbc.M406978200
- Sechler JM, Barlic J, Grivel JC, Murphy PM. IL-15 alters expression and function of the chemokine receptor CX3CR1 in human NK cells. Cell Immunol. 2004;230(2):99-108. doi: 10.1016/j.cellimm.2004.10.001
- Velasquez SY, Killian D, Schulte J, Sticht C, Thiel M, Lindner HA. Short term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities. J Biol Chem. 2016;291(25):12960-12977. doi: 10.1074/jbc.M116.721753