AccScience Publishing / MI / Online First / DOI: 10.36922/mi.3141
ORIGINAL RESEARCH ARTICLE

In vitro investigation into the dynamics between Acinetobacter baumannii, bacteriophage, and mammalian bronchial epithelial cells

Wei Yan1 Pengfei Zhang1 Kenneth K.W. To1 Sharon S.Y. Leung1*
Show Less
1 School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
MI 2024, 1(1), 81–94; https://doi.org/10.36922/mi.3141
Submitted: 11 March 2024 | Accepted: 15 April 2024 | Published: 9 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Antibiotic resistance is escalating due to the rapid emergence of multidrug-resistant bacteria and the stagnation in new antibiotic development. Bacteriophage, a natural enemy of bacteria, has re-emerged as a promising alternative in the post-antibiotic era. However, none of the recently completed randomized, placebo-controlled, and double-blinded clinical trials on phage therapy could confirm its efficacy. One of the major impediments is the lack of understanding of the phage, bacteria, and host body interactions. Our work investigates the dynamics between Acinetobacter baumannii, bacteriophage, and a mammalian bronchial epithelial cell line (BEAS-2B) in a coculture system. Our results demonstrated that the bactericidal effect of bacteriophage could be augmented in the presence of non-mucus-producing epithelial cells (by 3 – 5 log). Adsorption study indicated that both phages and bacteria could adhere to the epithelial cells, subsequently promoting their contact and the phage lytic effect. The presence of epithelial cells could also effectively inhibit/delay the emergence of phage resistance. These findings suggested that evaluating the in vitro antibacterial efficiency of bacteriophage in the presence of mammalian cells may yield better predictions of the therapeutic outcomes of bacteriophage therapy.

Keywords
Bacteriophage
Lung epithelial cells
Phage-mammalian cell interaction
Bacterial infections
Acinetobacter baumannii
Funding
This research was funded by the University Grants Committee, Hong Kong (grant number: 24300619).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Moelling K, Broecker F, Willy C. A wake-up call: We need phage therapy now. Viruses. 2018;10(12):688. doi: 10.3390/v10120688

 

  1. Jasim HN, Hafidh RR, Abdulamir AS. Formation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: In vitro and in vivo study. Iran J Basic Med Sci. 2018;21(11):1100-1108. doi: 10.22038/ijbms.2018.27307.6665

 

  1. Chang RYK, Wallin M, Lin Y, et al. Phage therapy for respiratory infections. Adv Drug Deliv Rev. 2018;133:76-86. doi: 10.1016/j.addr.2018.08.001

 

  1. Liu D, Van Belleghem JD, de Vries CR, et al. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses. 2021;13(7):1268. doi: 10.3390/v13071268

 

  1. Wroe JA, Johnson CT, García AJ. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A. 2020;108(1):39-49. doi: 10.1002/jbm.a.36790

 

  1. Chang RYK, Chen K, Wang J, et al. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob Agents Chemother. 2018;62(2):e01714-17. doi: 10.1128/aac.01714-17

 

  1. Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother. 2006;50(9):2912-2918. doi: 10.1128/aac.01630-05

 

  1. Tsonos J, Oosterik LH, Tuntufye HN, et al. A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Vet Microbiol. 2014;171(3-4):470-479. doi: 10.1016/j.vetmic.2013.10.021

 

  1. Ngassam-Tchamba C, Duprez JN, Fergestad M, et al. In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. J Glob Antimicrob Resist. 2020;22:762-770. doi: 10.1016/j.jgar.2020.06.020

 

  1. Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173-183. doi: 10.1016/j.micinf.2015.01.004

 

  1. Mekalanos JJ. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol. 1992;174(1):1-7. doi: 10.1128/jb.174.1.1-7.1992

 

  1. Hesse S, Rajaure M, Wall E, et al. Phage resistance in multidrug-resistant Klebsiella pneumoniae ST258 evolves via diverse mutations that culminate in impaired adsorption. mBio. 2020;11(1):e02530-19. doi: 10.1128/mBio.02530-19

 

  1. Gembara K, Dąbrowska K. Phage-specific antibodies. Curr Opin Biotechnol. 2021;68:186-192. doi: 10.1016/j.copbio.2020.11.011

 

  1. Cowdery JS, Chace JH, Yi AK, Krieg AM. Bacterial DNA induces NK cells to produce IFN-gamma in vivo and increases the toxicity of lipopolysaccharides. J Immunol. 1996;156(12):4570-4575.

 

  1. Gudmundsson GH, Agerberth B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods. 1999;232(1-2):45-54. doi: 10.1016/s0022-1759(99)00152-0

 

  1. Thakur A, Mikkelsen H, Jungersen G. Intracellular pathogens: Host immunity and microbial persistence strategies. J Immunol Res. 2019;2019:1356540. doi: 10.1155/2019/1356540

 

  1. Barr JJ, Auro R, Furlan M, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A. 2013;110(26):10771-10776. doi: 10.1073/pnas.1305923110

 

  1. Barr JJ, Auro R, Sam-Soon N, et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci U S A. 2015;112(44):13675-13680. doi: 10.1073/pnas.1508355112

 

  1. Bichet MC, Chin WH, Richards W, et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience. 2021;24(4):102287. doi: 10.1016/j.isci.2021.102287

 

  1. Nguyen S, Baker K, Padman BS, et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio. 2017;8(6):e01874-17. doi: 10.1128/mBio.01874-17

 

  1. Yan W, Banerjee P, Xu M, et al. Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev. 2021;176:113864. doi: 10.1016/j.addr.2021.113864

 

  1. Alemayehu D, Casey PG, McAuliffe O, et al. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. mBio. 2012;3(2):e00029-12. doi: 10.1128/mBio.00029-12

 

  1. Debarbieux L, Leduc D, Maura D, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010;201(7):1096-1104. doi: 10.1086/651135

 

  1. Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep. 2018;8(1):17559. doi: 10.1038/s41598-018-35859-6

 

  1. Núñez-Sánchez MA, Colom J, Walsh L, et al. Characterizing phage-host interactions in a simplified human intestinal barrier model. Microorganisms. 2020;8(9):1374. doi: 10.3390/microorganisms8091374

 

  1. Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep. 2018;8(1):5091. doi: 10.1038/s41598-018-23418-y

 

  1. Lee HY, Biswas D, Ahn J. In-vitro adhesion and invasion properties of Salmonella Typhimurium competing with bacteriophage in epithelial cells and chicken macrophages. Rev Bras Ciênc Avícola. 2015;17(4):427-432.

 

  1. Llanos-Chea A, Citorik RJ, Nickerson KP, et al. Bacteriophage therapy testing against Shigella flexneri in a novel human intestinal organoid-derived infection model. J Pediatr Gastroenterol Nutr. 2019;68(4):509-516. doi: 10.1097/mpg.0000000000002203

 

  1. Moye ZD, Woolston J, Abbeele PVD, et al. A bacteriophage cocktail eliminates Salmonella Typhimurium from the human colonic microbiome while preserving cytokine signaling and preventing attachment to and invasion of human cells by Salmonella in vitro. J Food Prot. 2019;82(8):1336-1349. doi: 10.4315/0362-028x.Jfp-18-587

 

  1. Peng F, Mi Z, Huang Y, et al. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol. 2014;14:181. doi: 10.1186/1471-2180-14-181

 

  1. The Actinobacteriophage Database, Procedures and Protocols n.d. Available from: https://phagesdb.org/ workflow [Last accessed on 2021 Sep 14.

 

  1. Adriaenssens EM, Lehman SM, Vandersteegen K, et al. CIM(®) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology. 2012;434(2):265-270. doi: 10.1016/j.virol.2012.09.018

 

  1. Carlson K. Appendix. Working with bacteriophages: Common techniques and methodological approaches. In: Kutter E, Sulakvelidze A, editors. Bacteriophages: Biology and Applications. United States: CRC Press; 2005. p. 437-494.

 

  1. Humphries RM, Ambler J, Mitchell SL, et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol. 2018;56(4):e01934-17. doi: 10.1128/jcm.01934-17

 

  1. De Plano LM, Franco D, Bonsignore M, et al. Phage-phenotype imaging of myeloma plasma cells by phage display. Appl Sci. 2021;11(17):7910.

 

  1. Pirnay JP, Kutter E. Bacteriophages: It’s a medicine, Jim, but not as we know it. Lancet Infect Dis. 2021;21(3):309-311. doi: 10.1016/s1473-3099(20)30464-3

 

  1. Ross A, Ward S, Hyman P. More is better: Selecting for broad host range bacteriophages. Front Microbiol. 2016;7:1352. doi: 10.3389/fmicb.2016.01352

 

  1. Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi: 10.3390/v10070351

 

  1. Lee HW, Koh YM, Kim J, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008;14(1):49-54. doi: 10.1111/j.1469-0691.2007.01842.x

 

  1. Sechi LA, Karadenizli A, Deriu A, et al. PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med Sci Monit. 2004;10(6):Br180-Br184.

 

  1. Smani Y, McConnell MJ, Pachón J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One. 2012;7(4):e33073. doi: 10.1371/journal.pone.0033073

 

  1. McCallin S, Oechslin F. Bacterial resistance to phage and its impact on clinical therapy. In: Górski A, Międzybrodzki R, Borysowski J, editors. Phage Therapy: A Practical Approach. Berlin: Springer International Publishing; 2019. p. 59-88.

 

  1. Gordillo Altamirano F, Forsyth JH, Patwa R, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol. 2021;6(2):157-161. doi: 10.1038/s41564-020-00830-7

 

  1. Fahey JV, Schaefer TM, Channon JY, Wira CR. Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract. Hum Reprod. 2005;20(6):1439-1446. doi: 10.1093/humrep/deh806

 

  1. Schulz C, Farkas L, Wolf K, Kratzel K, Eissner G, Pfeifer M. Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol. 2002;56(3):294-302. doi: 10.1046/j.1365-3083.2002.01137.x

 

  1. Liu X, Yin S, Chen Y, et al. LPS-induced proinflammatory cytokine expression in human airway epithelial cells and macrophages via NF-κB, STAT3 or AP-1 activation. Mol Med Rep. 2018;17(4):5484-5491. doi: 10.3892/mmr.2018.8542

 

  1. Clark RT, Hope A, Lopez-Fraga M, Schiller N, Lo DD. Bacterial particle endocytosis by epithelial cells is selective and enhanced by tumor necrosis factor receptor ligands. Clin Vaccine Immunol. 2009;16(3):397-407. doi: 10.1128/cvi.00210-08

 

  1. Archana A, Patel PS, Kumar R, Nath G. Neutralizing antibody response against subcutaneously injected bacteriophages in rabbit model. Virusdisease. 2021;32(1):38-45. doi: 10.1007/s13337-021-00673-8

 

  1. Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics (Basel). 2019;8(3):131. doi: 10.3390/antibiotics8030131
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing