AccScience Publishing / MI / Online First / DOI: 10.36922/mi.2377
Cite this article
131
Download
1263
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

The biological characteristic and therapeutic prospect of bladder cancer stem cells

Liqi Yin1, 2 Zongyi Shen1 Nan Zhang1 Lu Ying1, 2 Wenjing Zhang1 Xiaoyang Chen1 Youfeng Liang1 Chunhui Li1 Keying Yao1 Changyuan Yu1 Jianfeng Wang3* Zhao Yang1, 2*
Show Less
1 Department of Biomedical Engineering, College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
2 Department of Biotechnology, College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
3 artment of Urology-Japan Friendship Hospital, Beijing, China
MI 2024, 1(1), 25–50; https://doi.org/10.36922/mi.2377
Submitted: 5 December 2023 | Accepted: 18 March 2024 | Published: 29 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bladder cancer (BC), arising from bladder epithelial cells, is the most prevalent malignant tumor of the urinary system. Its main pathological variants include transitional cell carcinoma (TCC), squamous cell carcinoma, and adenocarcinoma, with TCC further divided into non-muscle-invasive BC (NMIBC) and muscle-invasive BC (MIBC). NMIBC accounts for 70% of all BC cases and is characterized by a favorable prognosis yet a high recurrence rate (31 – 78%). Conversely, MIBC accounts for the remainder of BC cases, characterized by high heterogeneity and poor prognosis. Current treatment methods for BC predominantly encompass surgical resection, radiotherapy, chemotherapy, and immunotherapy. However, these methods lack specificity, exhibit limited clinical efficacy, and often yield unsatisfactory treatment outcomes, predisposing BC to recurrence. On the other hand, BC stem cells (BCSCs) are a subset of cells within heterogeneous BC, possessing robust abilities in self-renewal, differentiation, tumorigenicity, metastasis, and drug resistance. They play a pivotal role in the initiation, progression, metastasis, and relapse of BC, rendering them ideal targets for targeted therapy. Research efforts in this field are currently focused on investigating the evolutionary origins, biomarkers, mechanism governing stemness maintenance, drug resistance, metastasis, metabolic reprogramming, immune evasion, and targeted therapies related to BCSCs. This article provides a comprehensive review of the latest advancements in the biological characteristics and therapeutic prospects of BCSCs.

Keywords
Bladder cancer stem cell
Biomarkers
Self-renewal mechanisms
Drug resistance
Metastasis
Metabolic reprogramming
Immune evasion
Targeted therapy
Funding
This work was supported by the Major Research Plan of the National Natural Science Foundation of China (92359202), Scientific and Technological Research Project of Xinjiang Production and Construction Corps (2022AB022), “Open Competition to Select the Best Candidates”Key Technology Program for Nucleic Acid Drugs of NCTIB (NCTIB2022HS01016) and the Joint Project of Biomedical Translational Engineering Research Center of Beijing University of Chemical Technology-China-Japan Friendship Hospital (XK2023-21).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660

 

  1. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011;306(7):737-745. doi: 10.1001/jama.2011.1142

 

  1. Rota M, Bosetti C, Boccia S, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: An updated systematic review and a meta-analysis to 2014. Arch Toxicol. 2014;88(8):1479-1490. doi: 10.1007/s00204-014-1296-5

 

  1. Akhtar S, Al-Shammari A, Al-Abkal J. Chronic urinary tract infection and bladder carcinoma risk: A meta-analysis of case-control and cohort studies. World J Urol. 2018;36(6):839-848. doi: 10.1007/s00345-018-2206-x

 

  1. Paonessa J, Beck H, Cook S. Squamous cell carcinoma of the renal pelvis associated with kidney stones: A case report. Med Oncol. 2011;28 Suppl 1:S392-S394. doi: 10.1007/s12032-010-9704-z

 

  1. Knight A, Askling J, Granath F, Sparen P, Ekbom A. Urinary bladder cancer in Wegener’s granulomatosis: Risks and relation to cyclophosphamide. Ann Rheum Dis. 2004;63(10):1307-1311. doi: 10.1136/ard.2003.019125

 

  1. Miyazaki J, Nishiyama H. Epidemiology of urothelial carcinoma. Int J Urol. 2017;24(10):730-734. doi: 10.1111/iju.13376

 

  1. Knowles MA, Hurst CD. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. doi: 10.1038/nrc3817

 

  1. Bladder Cancer: Diagnosis and management of bladder cancer: © NICE (2015) Bladder cancer: Diagnosis and management of bladder cancer. BJU Int. 2017;120(6):755-765. doi: 10.1111/bju.14045

 

  1. Kirkali Z, Chan T, Manoharan M, et al. Bladder cancer: Epidemiology, staging and grading, and diagnosis. Urology. 2005;66(6 Suppl 1):4-34. doi: 10.1016/j.urology.2005.07.062

 

  1. Maas M, Bedke J, Stenzl A, Todenhöfer T. Can urinary biomarkers replace cystoscopy? World J Urol. 2019;37(9):1741-1749. doi: 10.1007/s00345-018-2505-2

 

  1. Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: Non-muscle-invasive bladder cancer. BJU Int. 2017;119(3):371-380. doi: 10.1111/bju.13760

 

  1. Kim JW, Tomita Y, Trepel J, Apolo AB. Emerging immunotherapies for bladder cancer. Curr Opin Oncol. 2015;27(3):191-200. doi: 10.1097/cco.0000000000000177

 

  1. Song D, Powles T, Shi L, Zhang L, Ingersoll MA, Lu YJ. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol. 2019;249(2):151-165. doi: 10.1002/path.5306

 

  1. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-423. doi: 10.3322/caac.21631

 

  1. Powles T, Rosenberg JE, Sonpavde GP, et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384(12):1125-1135. doi: 10.1056/NEJMoa2035807

 

  1. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-322. doi: 10.1038/nature12965

 

  1. Siefker-Radtke AO, Matsubara N, Park SH, et al. Erdafitinib versus pembrolizumab in pretreated patients with advanced or metastatic urothelial cancer with select FGFR alterations: Cohort 2 of the randomized phase III THOR trial. Ann Oncol. 2024;35:107-111. doi: 10.1016/j.annonc.2023.10.003

 

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-111. doi: 10.1038/35102167

 

  1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737. doi: 10.1038/nm0797-730

 

  1. Verma P, Shukla N, Kumari S, Ansari MS, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer. 2023;1878(3):188887. doi: 10.1016/j.bbcan.2023.188887

 

  1. Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26-44. doi: 10.1038/s41575-021-00508-3

 

  1. Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol. 2019;107:38-52. doi: 10.1016/j.biocel.2018.12.001

 

  1. Gupta R, Bhatt LK, Johnston TP, Prabhavalkar KS. Colon cancer stem cells: Potential target for the treatment of colorectal cancer. Cancer Biol Ther. 2019;20(8):1068-1082. doi: 10.1080/15384047.2019.1599660

 

  1. Ma Z, Zhang C, Liu X, et al. Characterisation of a subpopulation of CD133(+) cancer stem cells from Chinese patients with oral squamous cell carcinoma. Sci Rep. 2020;10(1):8875. doi: 10.1038/s41598-020-64947-9

 

  1. Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751-6760. doi: 10.1158/1078-0432.Ccr-08-1034

 

  1. Chan KS, Espinosa I, Chao M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009;106(33):14016-14021. doi: 10.1073/pnas.0906549106

 

  1. Wang KJ, Wang C, Dai LH, et al. Targeting an autocrine regulatory loop in cancer stem-like cells impairs the progression and chemotherapy resistance of bladder cancer. Clin Cancer Res. 2019;25(3):1070-1086. doi: 10.1158/1078-0432.Ccr-18-0586

 

  1. Li C, Du Y, Yang Z, et al. GALNT1-Mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Res. 2016;76(5):1273-1283. doi: 10.1158/0008-5472.Can-15-2309

 

  1. Ooki A, VandenBussche CJ, Kates M, et al. CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer. 2018;119(8):961-970. doi: 10.1038/s41416-018-0291-7

 

  1. Su Y, Qiu Q, Zhang X, et al. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev. 2010;19(2):327-337. doi: 10.1158/1055-9965.Epi-09-0865

 

  1. Zhang Y, Zhang X, Huang X, et al. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res Ther. 2023;14(1):15. doi: 10.1186/s13287-023-03239-1

 

  1. Farsund T. Cell kinetics of mouse urinary bladder epithelium. II. Changes in proliferation and nuclear DNA content during necrosis regeneration, and hyperplasia caused by a single dose of cyclophosphamide. Virchows Arch B Cell Pathol. 1976;21(4):279-298.

 

  1. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol. 2000;278(6):F867-F874. doi: 10.1152/ajprenal.2000.278.6.F867

 

  1. Summerhayes IC, Chen LB. Localization of a Mr 52,000 keratin in basal epithelial cells of the mouse bladder and expression throughout neoplastic progression. Cancer Res. 1982;42(10):4098-4109.

 

  1. Apodaca G. The uroepithelium: Not just a passive barrier. Traffic. 2004;5(3):117-128. doi: 10.1046/j.1600-0854.2003.00156.x

 

  1. Martin BF. Cell replacement and differentiation in transitional epithelium: A histological and autoradiographic study of the guinea-pig bladder and ureter. J Anat. 1972;112(Pt 3):433-455.

 

  1. Kurzrock EA, Lieu DK, Degraffenried LA, Chan CW, Isseroff RR. Label-retaining cells of the bladder: Candidate urothelial stem cells. Am J Physiol Renal Physiol. 2008;294(6):F1415-F1421. doi: 10.1152/ajprenal.00533.2007

 

  1. Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914. doi: 10.1038/ncomms11914

 

  1. Castillo-Martin M, Domingo-Domenech J, Karni- Schmidt O, Matos T, Cordon-Cardo C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol. 2010;28(4):401-408. doi: 10.1016/j.urolonc.2009.04.019

 

  1. He X, Marchionni L, Hansel DE, et al. Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells. 2009;27(7):1487-1495. doi: 10.1002/stem.92

 

  1. Baskin LS, Hayward SW, Young PF, Cunha GR. Ontogeny of the rat bladder: Smooth muscle and epithelial differentiation. Acta Anat (Basel). 1996;155(3):163-171. doi: 10.1159/000147801

 

  1. Southgate J, Trejdosiewicz LK, Smith B, Selby PJ. Patterns of splice variant CD44 expression by normal human urothelium in situ and in vitro and by bladder-carcinoma cell lines. Int J Cancer. 1995;62(4):449-456. doi: 10.1002/ijc.2910620415

 

  1. Akhtar M, Rashid S, Gashir MB, Taha NM, Al Bozom I. CK20 and CK5/6 Immunohistochemical staining of urothelial neoplasms: A perspective. Adv Urol. 2020;2020:4920236. doi: 10.1155/2020/4920236

 

  1. Wu XR, Manabe M, Yu J, Sun TT. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J Biol Chem. 1990;265(31):19170-19179.

 

  1. De La Rosette J, Smedts F, Schoots C, Hoek H, Laguna P. Changing patterns of keratin expression could be associated with functional maturation of the developing human bladder. J Urol. 2002;168(2):709-717. doi: 10.1097/00005392-200208000-00085

 

  1. Wang H, Mei Y, Luo C, et al. Single-cell analyses reveal mechanisms of cancer stem cell maintenance and epithelial-mesenchymal transition in recurrent bladder cancer. Clin Cancer Res. 2021;27(22):6265-6278. doi: 10.1158/1078-0432.Ccr-20-4796

 

  1. Ohishi T, Koga F, Migita T. Bladder cancer stem-like cells: Their origin and therapeutic perspectives. Int J Mol Sci. 2015;17(1):43. doi: 10.3390/ijms17010043

 

  1. Yang Z, Li C, Fan Z, et al. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur Urol. 2017;71(1):8-12. doi: 10.1016/j.eururo.2016.06.025

 

  1. Van Batavia J, Yamany T, Molotkov A, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol. 2014;16(10):982-91, 1-5. doi: 10.1038/ncb3038

 

  1. Shin K, Lim A, Odegaard JI, et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol. 2014;16(5):469-478. doi: 10.1038/ncb2956

 

  1. Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A multifunctional mediator of cancer progression. Biomolecules. 2021;11(12):1850. doi: 10.3390/biom11121850

 

  1. Volkmer JP, Sahoo D, Chin RK, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A. 2012;109(6):2078-2083. doi: 10.1073/pnas.1120605109

 

  1. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018-11032. doi: 10.18632/oncotarget.6920

 

  1. Yang W, Wang C, Lin Y, et al. OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J Hepatol. 2012;57(3):613-620. doi: 10.1016/j.jhep.2012.04.024

 

  1. Lin CH, Liu CH, Tsai HL, Wang JY, Tsai HP, Chai CY. Expression of OV-6 in primary colorectal cancer and rectal cancer with preoperative chemoradiotherapy: A clinicopathological study. Histopathology. 2013;62(5):742-751. doi: 10.1111/his.12075

 

  1. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797-1806. doi: 10.1084/jem.183.4.1797

 

  1. Hepburn AC, Veeratterapillay R, Williamson SC, et al. Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One. 2012;7(11):e50690. doi: 10.1371/journal.pone.0050690

 

  1. Ning ZF, Huang YJ, Lin TX, et al. Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. J Int Med Res. 2009;37(3):621-630. doi: 10.1177/147323000903700304

 

  1. She JJ, Zhang PG, Wang ZM, Gan WM, Che XM. Identification of side population cells from bladder cancer cells by DyeCycle Violet staining. Cancer Biol Ther. 2008;7(10):1663-1668. doi: 10.4161/cbt.7.10.6637

 

  1. Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network. Sci Signal. 2012;5(246):re6. doi: 10.1126/scisignal.2002906

 

  1. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5(12):997-1014. doi: 10.1038/nrd2154

 

  1. Brandt WD, Matsui W, Rosenberg JE, et al. Urothelial carcinoma: Stem cells on the edge. Cancer Metastasis Rev. 2009;28(3-4):291-304. doi: 10.1007/s10555-009-9187-6

 

  1. Gu C, Wang Z, Zhou N, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)- methyladenosine of Notch1. Mol Cancer. 2019;18(1):168. doi: 10.1186/s12943-019-1084-1

 

  1. Zhang H, Liu L, Liu C, et al. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget. 2017;8(21):34362-34373. doi: 10.18632/oncotarget.16156

 

  1. Hayashi T, Gust KM, Wyatt AW, et al. Not all NOTCH is created equal: The oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin Cancer Res. 2016;22(12):2981-2992. doi: 10.1158/1078-0432.Ccr-15-2360

 

  1. Yang Z, He L, Lin K, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res. 2017;23(21):6673-6685. doi: 10.1158/1078-0432.Ccr-17-0882

 

  1. Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: Biology and pathophysiology. Annu Rev Biochem. 2019;88:577-604. doi: 10.1146/annurev-biochem-013118-111829

 

  1. Li X, Zhuo S, Cho YS, et al. YAP antagonizes TEAD-mediated AR signaling and prostate cancer growth. EMBO J. 2023;42(4):e112184. doi: 10.15252/embj.2022112184

 

  1. Lo Sardo F, Strano S, Blandino G. YAP and TAZ in lung cancer: Oncogenic role and clinical targeting. Cancers (Basel). 2018;10(5):137. doi: 10.3390/cancers10050137

 

  1. Li X, Zhuo S, Zhuang T, et al. YAP inhibits ERα and ER(+) breast cancer growth by disrupting a TEAD-ERα signaling axis. Nat Commun. 2022;13(1):3075. doi: 10.1038/s41467-022-30831-5

 

  1. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799-816. doi: 10.1038/nature05874

 

  1. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199-227. doi: 10.1146/annurev.pathol.4.110807.092222

 

  1. Li Y, Li G, Guo X, Yao H, Wang G, Li C. Non-coding RNA in bladder cancer. Cancer Lett. 2020;485:38-44. doi: 10.1016/j.canlet.2020.04.023

 

  1. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-388. doi: 10.1038/nature11993

 

  1. Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science. 2013;340(6131):440-441. doi: 10.1126/science.1238522

 

  1. Li H, Yang J, Wei X, et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR- 133a. J Cell Physiol. 2018;233(6):4643-4651. doi: 10.1002/jcp.26230

 

  1. Tao T, Yuan S, Liu J, et al. Cancer stem cell-specific expression profiles reveal emerging bladder cancer biomarkers and identify circRNA_103809 as an important regulator in bladder cancer. Aging (Albany NY). 2020;12(4):3354-3370. doi: 10.18632/aging.102816

 

  1. Chen X, Xie R, Gu P, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res. 2019;25(4):1389-1403. doi: 10.1158/1078-0432.Ccr-18-1656

 

  1. Zhan Y, Chen Z, He S, et al. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2. Mol Cancer. 2020;19(1):25. doi: 10.1186/s12943-020-1143-7

 

  1. Rusu P, Shao C, Neuerburg A, et al. GPD1 Specifically marks dormant glioma stem cells with a distinct metabolic profile. Cell Stem Cell. 2019;25(2):241-257.e8. doi: 10.1016/j.stem.2019.06.004

 

  1. Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem. 2023;38(1):2166035. doi: 10.1080/14756366.2023.2166035

 

  1. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4(6):697-720. doi: 10.1517/17425255.4.6.697

 

  1. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 2017;7(1):13856. doi: 10.1038/s41598-017-14364-2

 

  1. Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev Rep. 2011;7(2):292-306. doi: 10.1007/s12015-010-9208-4

 

  1. Croker AK, Rodriguez-Torres M, Xia Y, et al. Differential functional roles of ALDH1A1 and ALDH1A3 in mediating metastatic behavior and therapy resistance of human breast cancer cells. Int J Mol Sci. 2017;18(10):2039. doi: 10.3390/ijms18102039

 

  1. Wang YC, Yo YT, Lee HY, et al. ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol. 2012;180(3):1159-1169. doi: 10.1016/j.ajpath.2011.11.015

 

  1. Kozovska Z, Patsalias A, Bajzik V, et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer. 2018;18(1):656. doi: 10.1186/s12885-018-4572-6

 

  1. Falso MJ, Buchholz BA, White RW. Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin. Anticancer Res. 2012;32(3):733-738.

 

  1. Pastushenko I, Blanpain C. EMT Transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212-226. doi: 10.1016/j.tcb.2018.12.001

 

  1. Serrano Nájera G, Weijer CJ. The evolution of gastrulation morphologies. Development. 2023;150(7):dev200885 doi: 10.1242/dev.200885

 

  1. Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 2020;30(10):764-776. doi: 10.1016/j.tcb.2020.07.003

 

  1. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1-15. doi: 10.1002/path.2727

 

  1. Zhao D, Besser AH, Wander SA, et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. 2015;34(43):5447-5459. doi: 10.1038/onc.2014.473

 

  1. Wang G, Dai Y, Li K, et al. Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol. 2021;9:627706. doi: 10.3389/fcell.2021.627706

 

  1. Teeuwssen M, Fodde R. Wnt signaling in ovarian cancer stemness, EMT, and therapy resistance. J Clin Med. 2019;8(10):1658. doi: 10.3390/jcm8101658

 

  1. Zhang J, Kuang Y, Wang Y, Xu Q, Ren Q. Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-κB pathway. Apoptosis. 2017;22(6):877-884. doi: 10.1007/s10495-017-1368-0

 

  1. Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J Clin Med. 2016;5(4):41 doi: 10.3390/jcm5040041

 

  1. Vantaku V, Donepudi SR, Ambati CR, et al. Expression of ganglioside GD2, reprogram the lipid metabolism and EMT phenotype in bladder cancer. Oncotarget. 2017;8(56):95620- 95631. doi: 10.18632/oncotarget.21038

 

  1. Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther. 2021;17:20-33. doi: 10.1016/j.reth.2021.02.006

 

  1. Jinesh GG, Manyam GC, Mmeje CO, Baggerly KA, Kamat AM. Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Sci Rep. 2017;7(1):9602. doi: 10.1038/s41598-017-08796-z

 

  1. Liu S, Liu Z, Shang A, et al. CD44 is a potential immunotherapeutic target and affects macrophage infiltration leading to poor prognosis. Sci Rep. 2023;13(1):9657. doi: 10.1038/s41598-023-33915-4

 

  1. Yao Y, Ye H, Qi Z, et al. B7-H4(B7x)-Mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in glioma patients. Clin Cancer Res. 2016;22(11):2778-2790. doi: 10.1158/1078-0432.Ccr-15-0858

 

  1. Lee Y, Shin JH, Longmire M, et al. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res. 2016;22(14):3571-3581. doi: 10.1158/1078-0432.Ccr-15-2665

 

  1. Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12(11):1113-1125. doi: 10.1093/neuonc/noq082

 

  1. Wei J, Barr J, Kong LY, et al. Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 2010;9(1):67-78. doi: 10.1158/1535-7163.Mct-09-0734

 

  1. Salomé B, Sfakianos JP, Ranti D, et al. NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell. 2022;40(9):1027-1043.e9. doi: 10.1016/j.ccell.2022.08.005

 

  1. Herbst RS, Majem M, Barlesi F, et al. COAST: An open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J Clin Oncol. 2022;40(29):3383-3393. doi: 10.1200/jco.22.00227

 

  1. Li C, Yang Z, Du Y, et al. BCMab1, a monoclonal antibody against aberrantly glycosylated integrin α3β1, has potent antitumor activity of bladder cancer in vivo. Clin Cancer Res. 2014;20(15):4001-4013. doi: 10.1158/1078-0432.Ccr-13-3397

 

  1. Li C, Yan R, Yang Z, et al. BCMab1-Ra, a novel immunotoxin that BCMab1 antibody coupled to Ricin A chain, can eliminate bladder tumor. Oncotarget. 2017;8(28):46704-46705. doi: 10.18632/oncotarget.13504

 

  1. Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48-54. doi: 10.1038/nm976

 

  1. Gelain A, Mori M, Meneghetti F, Villa S. Signal transducer and activator of transcription protein 3 (STAT3): An update on its direct inhibitors as promising anticancer agents. Curr Med Chem. 2019;26(27):5165-5206. doi: 10.2174/0929867325666180719122729

 

  1. Jonker DJ, Nott L, Yoshino T, et al. Napabucasin versus placebo in refractory advanced colorectal cancer: A randomised phase 3 trial. Lancet Gastroenterol Hepatol. 2018;3(4):263-270. doi: 10.1016/s2468-1253(18)30009-8

 

  1. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19(1):145. doi: 10.1186/s12943-020-01258-7

 

  1. Odate S, Veschi V, Yan S, Lam N, Woessner R, Thiele CJ. Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. Clin Cancer Res. 2017;23(7):1771-1784. doi: 10.1158/1078-0432.Ccr-16-1317

 

  1. Shastri A, Choudhary G, Teixeira M, et al. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J Clin Invest. 2018;128(12):5479-5488. doi: 10.1172/jci120156

 

  1. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265-280. doi: 10.1038/s41576-021-00439-4

 

  1. Saadi M, Karkhah A, Pourabdolhossein F, Ataie A, Monif M, Nouri HR. Involvement of NLRC4 inflammasome through caspase-1 and IL-1β augments neuroinflammation and contributes to memory impairment in an experimental model of Alzheimer’s like disease. Brain Res Bull. 2020;154:81-90. doi: 10.1016/j.brainresbull.2019.10.010

 

  1. Yang Z, Wang H, Zhang N, et al. Chaetocin abrogates the self-renewal of bladder cancer stem cells via the suppression of the KMT1A-GATA3-STAT3 circuit. Front Cell Dev Biol. 2020;8:424. doi: 10.3389/fcell.2020.00424

 

  1. Gutzmer R, Solomon JA. Hedgehog pathway inhibition for the treatment of basal cell carcinoma. Target Oncol. 2019;14(3):253-267. doi: 10.1007/s11523-019-00648-2

 

  1. Di Magno L, Coni S, Di Marcotullio L, Canettieri G. Digging a hole under Hedgehog: Downstream inhibition as an emerging anticancer strategy. Biochim Biophys Acta. 2015;1856(1):62-72. doi: 10.1016/j.bbcan.2015.06.003

 

  1. Jin G, Sivaraman A, Lee K. Development of taladegib as a sonic hedgehog signaling pathway inhibitor. Arch Pharm Res. 2017;40(12):1390-1393. doi: 10.1007/s12272-017-0987-x

 

  1. Wang C, Wu H, Katritch V, et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature. 2013;497(7449):338-343. doi: 10.1038/nature12167

 

  1. Hyman JM, Firestone AJ, Heine VM, et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci U S A. 2009;106(33):14132-14137. doi: 10.1073/pnas.0907134106

 

  1. Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer. 2002;2(9):705-713. doi: 10.1038/nrc887

 

  1. Infante P, Mori M, Alfonsi R, et al. Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 2015;34(2):200-217. doi: 10.15252/embj.201489213

 

  1. Zhu L, Ni C, Dong B, et al. A novel hedgehog inhibitor iG2 suppresses tumorigenesis by impairing self-renewal in human bladder cancer. Cancer Med. 2016;5(9):2579-2586. doi: 10.1002/cam4.802

 

  1. Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47- signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012;109(17):6662-6667. doi: 10.1073/pnas.1121623109

 

  1. Kiss B, van den Berg NS, Ertsey R, et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer. Clin Cancer Res. 2019;25(12):3561-3571. doi: 10.1158/1078-0432.Ccr-18-3267

 

  1. Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271-285. doi: 10.1016/j.cell.2009.05.046

 

  1. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288(5473):2051-2054. doi: 10.1126/science.288.5473.2051

 

  1. Bouwstra R, van Meerten T, Bremer E. CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies. Clin Transl Med. 2022;12(8):e943. doi: 10.1002/ctm2.943

 

  1. Kaur S, Cicalese KV, Bannerjee R, Roberts DD. Preclinical and clinical development of therapeutic antibodies targeting functions of CD47 in the tumor microenvironment. Antib Ther. 2020;3(3):179-192. doi: 10.1093/abt/tbaa017

 

  1. Chen SH, Dominik PK, Stanfield J, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021;9(10):e003464. doi: 10.1136/jitc-2021-003464

 

  1. Chen Y, Wang H, Zuo Y, Li N, Ding M, Li C. A novel monoclonal antibody KMP1 has potential antitumor activity of bladder cancer by blocking CD44 in vivo and in vitro. Cancer Med. 2018;7(5):2064-2077. doi: 10.1002/cam4.1446

 

  1. Luo Y, Tian Z, Hua X, et al. Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression. Cell Mol Life Sci. 2020;77(2):351-363. doi: 10.1007/s00018-019-03185-3

 

  1. Zhuang J, Shen L, Li M, et al. Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 2023;83(10):1611-1627. doi: 10.1158/0008-5472.Can-22-2213

 

  1. Ma Z, Li X, Mao Y, et al. Interferon-dependent SLC14A1(+) cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40(12):1550- 1565.e7. doi: 10.1016/j.ccell.2022.11.005

 

  1. Liang T, Tao T, Wu K, et al. Cancer-associated fibroblast-induced remodeling of tumor microenvironment in recurrent bladder cancer. Adv Sci (Weinh). 2023;10(31):e2303230. doi: 10.1002/advs.202303230

 

  1. Luo H, Xia X, Huang LB, et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat Commun. 2022;13(1):6619. doi: 10.1038/s41467-022-34395-2

 

  1. Ma C, Yang C, Peng A, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 2023;22(1):170. doi: 10.1186/s12943-023-01876-x

 

  1. Chung WM, Molony RD, Lee YF. Non-stem bladder cancer cell-derived extracellular vesicles promote cancer stem cell survival in response to chemotherapy. Stem Cell Res Ther. 2021;12(1):533. doi: 10.1186/s13287-021-02600-6

 

  1. Andreucci E, Peppicelli S, Ruzzolini J, et al. The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. J Mol Med (Berl). 2020;98(10):1431-1446. doi: 10.1007/s00109-020-01959-y

 

  1. Ramadan WS, Alkarim S, Moulay M, et al. Modulation of the tumor microenvironment by ellagic acid in rat model for hepatocellular carcinoma: A potential target against hepatic cancer stem cells. Cancers (Basel). 2023;15(19):4891. doi: 10.3390/cancers15194891

 

  1. Wang G, Heijs B, Kostidis S, et al. Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation. Cell Stem Cell. 2022;29(11):1580-1593.e7. doi: 10.1016/j.stem.2022.10.008

 

  1. Planque M, Igelmann S, Ferreira Campos AM, Fendt SM. Spatial metabolomics principles and application to cancer research. Curr Opin Chem Biol. 2023;76:102362. doi: 10.1016/j.cbpa.2023.102362

 

  1. Yu L, Li Z, Mei H, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clin Transl Immunology. 2021;10(2):e1248. doi: 10.1002/cti2.1248

 

  1. Parriott G, Deal K, Crean S, Richardson E, Nylen E, Barber A. T-cells expressing a chimeric-PD1-Dap10- CD3zeta receptor reduce tumour burden in multiple murine syngeneic models of solid cancer. Immunology. 2020;160(3):280-294. doi: 10.1111/imm.13187

 

  1. Miyata H, Hirohashi Y, Yamada S, et al. GRIK2 is a target for bladder cancer stem-like cell-targeting immunotherapy. Cancer Immunol Immunother. 2022;71(4):795-806. doi: 10.1007/s00262-021-03025-z

 

  1. O’Brien KA, Murray AJ, Simonson TS. Notch signaling and cross-talk in hypoxia: A candidate pathway for high-altitude adaptation. Life (Basel). 2022;12(3):437. doi: 10.3390/life12030437

 

  1. Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M, Kavianpour M. The Hippo signaling pathway in leukemia: Function, interaction, and carcinogenesis. Cancer Cell Int. 2021;21(1):705. doi: 10.1186/s12935-021-02408-7
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing