The therapeutic potential of RANTES/CCL5 across diverse infections and its synergistic enhancement by ezrin peptide RepG3 for long COVID
The amplification of anti-infective immunity against a wide spectrum of acute and chronic infections caused by various pathogens is mediated by RANTES/CCL5. This chemokine controls infections caused by viruses, bacteria, fungi, and protozoans. In addition, RANTES/CCL5 exhibits anti-cancer effects by increasing NK-cell activity and targeting tumors. RANTES/CCL5 acts by amplifying antigen-specific immunity on mucosal surfaces, programmed T-cell responses, cytotoxic T lymphocytes (CTL), B-cell activation, and antibody production. RANTES/CCL5 exerts its effects by binding to C-C receptors, thereby triggering JAK/STAT signaling and inducing the migration of lymphocytes, NK cells, and monocytes. In the brain, RANTES/CCL5 activates astrocytes and upregulates anti-inflammatory interleukin (IL)-10 expression. Inflammatory cytokines rapidly induce RANTES/CCL5 expression in fibroblasts, epithelial cells, and monocytes/macrophages. In T-cells, RANTES/CCL5 expression is mediated by translational control of the transcription factor RFLAT-1/KLF13, which is responsible for a 3-day delay in RANTES/CCL5 secretion after T-cell activation. A cell membrane multi-protein complex containing CFTR, EBP50, ezrin, and PKC is a dominant regulator of both RANTES/CCL5 and inflammatory cytokine expression. Treatment of a volunteer patient suffering from long COVID/vaccine injury with the ezrin peptide RepG3 alleviated symptoms, substantially reduced serum proinflammatory cytokines to normal levels, and enhanced the expression of RANTES/CCL5. The immune amplification activities of RANTES/CCL5 and the ezrin peptide RepG3 exhibit striking similarities. In contrast, the ezrin peptide RepG3 differs from RANTES/CCL5 in its ability to significantly inhibit the expression of proinflammatory cytokines IL-1β, IL-6, IL-8, IL-13, TNF-α, and proinflammatory chemokines MIP-1α and MIP-1β. The mechanism through which the ezrin peptide RepG3 enhances adaptive immunity likely involves its induction of systemic elevation of RANTES/CCL5 expression and the simultaneous inhibition of proinflammatory cytokine expression.
- Davis H, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21:133-146. doi: 10.1038/s41579-022-00846-2
- Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023;29:2347-2357. doi: 10.1038/s41591-023-02521-2
- Holms RD. Long COVID (PASC) is maintained by a self-sustaining pro-inflammatory TLR4/RAGE-Loop of S100A8/ A9 > TLR4/RAGE signalling, inducing chronic expression of IL-1b, IL-6 and TNFa: Anti-inflammatory ezrin peptides as potential therapy. Immuno. 2022;2:512-533. doi: 10.3390/immuno2030033
- Theoharides T. Could SARS-CoV-2 spike protein be responsible for long-COVID syndrome? Mol Neurobiol. 2022;59:1850-1861. doi: 10.1007/s12035-021-02696-0
- Proal A, VanElzakker MB, Aleman S, et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol. 2023;24:1616-1627. doi: 10.1038/s41590-023-01601-2
- Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins /deathsregis tered weekly inengland and wales provisional / weekending22september 2023 [Last accessed on 2023 Oct 03].
- Available from: https://www.kff.org/policy-watch/why-do-vaccinated-people-represent-most-covid-19-deaths-right-now [Last accessed on 2024 Jan 17].
- Available from: https://www.statista.com/statistics/1131428/ excess-deaths-in-england-and-wales [Last accessed on 2024 Jan 17].
- Deaths by Vaccination Status, England. Available from: https:// www.ons.gov.uk/peoplepopulationandcommunity/birthsdeaths andmarriages/deaths/datasets/deathsbyvaccinationstatus england [Last accessed on 2024 Jan 17].
- Coronavirus (COVID-19) Latest Insights: Vaccines; 2023. Available from: https://www.ons.gov.uk/ peoplepopulationandcommunity/healthandsocialcare/ conditionsanddiseases/articles/coronaviruscovid19l atestinsights/vaccines#deaths-by-vaccination-status [Last accessed on 2024 Jan 17].
- Parry PI, Lefringhausen A, Turni C, et al. “Spikeopathy”: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines. 2023;11(8):2287. doi: 10.3390/biomedicines11082287
- Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol Med. 2022;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007
- Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation. 2023;147(7):867-876. doi: 10.1161/CIRCULATIONAHA.122.061025
- Brogna C, Cristoni S, Marino G, et al. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl. 2023;17(6):e2300048. doi: 10.1002/prca.202300048
- Aldén M, Olofsson Falla F, Yang D, et al. Intracellular reverse transcription of pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. 2022;44:1115-1126. doi: 10.3390/cimb44030073
- Khan S, Shafiei M, Longoria C, Schoggins J, Savani S, Hasan Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021;10:e68563. doi: 10.7554/eLife.68563
- Faist A, Schloer S, Mecate-Zambrano A, et al. Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res. 2023;209:105475. doi: 10.1016/j.antiviral.2022.105475
- Holms RD, Ataullakhanov RI. Ezrin peptide therapy from HIV to COVID: Inhibition of inflammation and amplification of adaptive anti-viral immunity. Int J Mol Sci. 2021;22:11688. doi: 10.3390/ijms222111688
- Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022;9:12-27. doi: 10.1016/j.gendis.2021.08.004
- Krensky AM, Ahn YT. Mechanisms of disease: Regulation of RANTES (CCL5) in renal disease. Nat Clin Pract Nephrol. 2007;3(3):164-170. doi: 10.1038/ncpneph0418
- Sullivan NL, Eickhoff CS, Zhang X, Giddings OK, Lane TE, Hoft DF. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. J Immunol. 2011;187(3):1358-1368. doi: 10.4049/jimmunol.1100033
- Bhat H, Zaun G, Hamdan TA, et al. Arenavirus induced CCL5 expression causes NK cell-mediated melanoma regression. Front Immunol. 2020;11:1849. doi: 10.3389/fimmu.2020.01849
- Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry EJ. A role for the chemokine RANTES in regulating CD8 T cell responses during chronic viral infection. PLoS Pathog. 2011;7(7):e1002098. doi: 10.1371/journal.ppat.1002098
- Blanco R, Gómez de Cedrón M, Gámez-Reche L, et al. The chemokine receptor CCR5 links memory CD4(+) T cell metabolism to T cell antigen receptor nanoclustering. Front Immunol. 2021;12:722320. doi: 10.3389/fimmu.2021.722320
- Culley FJ, Pennycook AM, Tregoning JS, et al. Role of CCL5 (RANTES) in viral lung disease. J Virol. 2006;80:8151-8157. doi: 10.1128/JVI.00496-06
- Glass WG, Rosenberg HF, Murphy PM. Chemokine regulation of inflammation during acute viral infection. Curr Opin Allergy Clin Immunol. 2003;3:467-473. doi: 10.1097/00130832-200312000-00008
- Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976-988. doi: 10.1016/j.csbj.2021.01.034
- Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13):e139834. doi: 10.1172/jci. insight.139834
- Pérez-García F, Martin-Vicente M, Rojas-García RL, et al. High SARS-CoV-2 Viral load and low CCL5 expression levels in the upper respiratory tract are associated with COVID-19 severity. J Infect Dis. 2022;225:977-982. doi: 10.1093/infdis/jiab604
- Law AHY, Lee DCW, Cheung BKW, Yim HCH, Lau ASY. Role for nonstructural protein 1 of severe acute respiratory syndrome coronavirus in chemokine dysregulation. J Virol. 2007;81:416-422. doi: 10.1128/JVI.02336-05
- Islam M, Kalita T, Saikia AK, et al. Significance of RANTES-CCR5 axis and linked downstream immunomodulation in Dengue pathogenesis: A study from Guwahati, India. J Med Virol. 2019;91(12):2066-2073. doi: 10.1002/jmv.25561
- Duma L, Häussinger D, Rogowski M, Lusso P, Grzesiek S. Recognition of RANTES by extracellular parts of the CCR5 receptor. J Mol Biol. 2007;365(4):1063-1075. doi: 10.1016/j.jmb.2006.10.040
- Coenen M, Nattermann J. The role of CCR5 in HCV infection. Eur J Med Res. 2010;15:97-101. doi: 10.1186/2047-783X-15-3-97
- Thio CL, Astemborski J, Thomas R, et al. Interaction between RANTES promoter variant and CCR5Delta32 favors recovery from hepatitis B. J Immunol. 2008;181:7944-7947. doi: 10.4049/jimmunol.181.11.7944
- Elliott MB, Tebbey PW, Pryharski KS, Scheuer CA, Laughlin TS, Hancock GE. Inhibition of respiratory syncytial virus infection with the CC chemokine RANTES (CCL5). J Med Virol. 2004;73(2):300-308. doi: 10.1002/jmv.20091
- Silva T, Temerozo JR, do Vale G, et al. The chemokine CCL5 inhibits the replication of influenza A virus through SAMHD1 modulation. Front Cell Infect Microbiol. 2021;11:549020. doi: 10.3389/fcimb.2021.549020
- Marques RE, Guabiraba R, Del Sarto JL, et al. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology. 2015;145:583-596. doi: 10.1111/imm.12476
- de-Oliveira-Pinto LM, Marinho CF, Povoa TF, et al. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. PLoS One. 2012;7:e38527. doi: 10.1371/journal.pone.0038527
- Wuest TR, Carr DJ. The role of chemokines during herpes simplex virus-1 infection. Front Biosci. 2008;13:4862-4872. doi: 10.2741/3045
- Vilela MC, Lima GK, Rodrigues DH, et al. Absence of CCR5 increases neutrophil recruitment in severe herpetic encephalitis. BMC Neurosci. 2013;14:19. doi: 10.1186/1471-2202-14-19
- Karim R, Tummers B, Meyers C, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLoS Pathog. 2013;9(5)e1003384. doi: 10.1371/journal.ppat.1003384
- Monath TP. Treatment of yellow fever. Antiviral Res. 2008;78:116-124. doi: 10.1016/j.antiviral.2007.10.009
- Sakthivel SK, Singh UP, Singh S, Taub DD, Igietseme JU, Lillard JW Jr. CCL5 regulation of mucosal chlamydial immunity and infection. BMC Microbiol. 2008;8:136. doi: 10.1186/1471-2180 8-136
- Singh R, Singh S, Briles DE, Taub DD, Hollingshead SK, Lillard JW Jr. CCL5-independent helper T lymphocyte responses to immuno-dominant pneumococcal surface protein A epitopes. Vaccine. 2012;30(6):1181-1190. doi: 10.1016/j.vaccine.2011.12.020
- Vesosky B, Rottinghaus EK, Stromberg P, Turner J, Beamer G. CCL5 participates in early protection against Mycobacterium tuberculosis. J Leukoc Biol. 2010;87(6):1153-1165. doi: 10.1189/jlb.1109742
- Richardson JP, Moyes DL. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6(4):327-337. doi: 10.1080/21505594.2015.1004977
- Huang C, Levitz SM. Stimulation of macrophage inflammatory protein-1a, macrophage inflammatory protein-1b, and RANTES by Candida albicans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J Infect Dis. 2000;181:791-794. doi: 10.1086/315250
- Govender Y, Chan T, Yamamoto HS, Budnik B, Fichorova RN. The role of small extracellular vesicles in viral-protozoan symbiosis: Lessons from trichomonasvirus in an isogenic host parasite model. Front Cell Infect Microbiol. 2020;10:591172. doi: 10.3389/fcimb.2020.591172
- Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593-633. doi: 10.1146/annurev.iy.12.040194.003113
- Mueller A, Strange PG. Mechanisms of internalization and recycling of the chemokine receptor, CCR5. Eur J Biochem. 2004;271:243-252. doi: 10.1046/j.1432-1033.2003.03918.x
- Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15:23. doi: 10.1186/s12964-017-0177-y
- Wong M, Fish EN. RANTES and MIP-1a activate stats in T cells. J Biol Chem. 1998;273(1):309-314. doi: 10.1074/jbc.273.1.309
- Steffens CM, Hope TJ. Localization of CD4 and CCR5 in living cells. J Virol. 2003;77(8):4985-4991. doi: 10.1128/JVI.77.8.4985–4991.2003
- Hammad MM, Kuang YQ, Yan R, Allen H, Dupre DJ. Na+/H+ exchanger regulatory factor-1 is involved in chemokine receptor homodimer CCR5 internalization and signal transduction but does not affect CXCR4 homodimer or CXCR4-CCR5 heterodimer. J Biol Chem. 2010;285:34653-34664. doi: 10.1074/jbc.M110.106591
- Oppermann M. Chemokine receptor CCR5: Insights into structure, function, and regulation. Cell Signal. 2004;16:1201-1210. doi: 10.1016/j.cellsig.2004.04.007
- Rieske P, Pongubala JM. AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J Biol Chem. 2001;276(11):8460-8468. doi: 10.1074/jbc.M007482200
- Kanada S, Nishiyama C, Nakano N, et al. Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood. 2011;117(7):2211-2222. doi: 10.1182/blood-2010-06-291898
- Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010;185:6413-6419. doi: 10.4049/jimmunol.1001829
- Amella CA, Sherry B, Shepp DH, Schmidtmayerova H. Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP. J Virol. 2005;79(9):5625-5631. doi: 10.1128/JVI.79.9.5625–5631.2005
- Zhao J, Ma L, Wu YL, Wang P, Hu W, Pei G. Chemokine receptor CCR5 functionally couples to inhibitory G proteins and undergoes desensitization. J Cell Biochem. 1998;71:36-45. doi: 10.1002/(sici)1097-4644(19981001)71:1<36:aid-jcb4>3.0.co;2-2
- Lorenzen E, Ceraudo E, Berchiche YA, et al. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs. Sci Signal. 2018;11:eaao6152. doi: 10.1126/scisignal.aao6152
- Pollok-Kopp B, Schwarze K, Baradari VK, Oppermann M. Analysis of ligand-stimulated CC chemokine receptor 5 (CCR5) phosphorylation in intact cells using phosphosite-specific antibodies. J Biol Chem. 2003;278(4):2190-2198. doi: 10.1074/jbc.M209844200
- Glorieux C, Huang P. Regulation of CD137 expression through K-Ras signaling in pancreatic cancer cells. Cancer Commun (Lond). 2019;39:41. doi: 10.1186/s40880-019-0386-4
- Lillard J, Boyaka P, Taub D, McGhee J. RANTES potentiates antigen-specific mucosal immune responses. J Immunol. 2001;166(1):162-169. doi: 10.4049/jimmunol.166.1.162
- Li N, Mirzakhani H, Kiefer A, et al. Regulated on activation, normal T cell Expressed and secreted (RANTES) drives the resolution of allergic asthma. iScience. 2021;24:103163. doi: 10.1016/j.isci.2021.103163
- Appay V, Dunbar PR, Cerundolo V, et al. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol. 2000;12(8):1173-1182.
- Appay V, Dunbar PR, Cerundolo V, McMichael A, Czaplewski L, Rowland-Jones S. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol. 2000;12(8):1173-1182.
- Li J, Tu Y, Wen J, Yao F, Wei W, Sun S. Role for ezrin in breast cancer cell chemotaxis to CCL5. Oncol Rep. 2010;24(4):965-971. doi: 10.3892/or.2010.965
- Zhang Y, Zhai Q, Luo Y, Dorf ME. RANTES-mediated chemokine transcription in astrocytes involves activation and translocation of p90 ribosomal S6 protein kinase (RSK). J Biol Chem. 2002;277(21):19042-19048. doi: 10.1074/jbc.M112442200.
- Kim HY, Cha HJ, Kim HS. CCL5 upregulates IL-10 expression and partially mediates the antihypertensive effects of IL-10 in the vascular smooth muscle cells of spontaneously hypertensive rats. Hypertens Res. 2015;38:666-674. doi: 10.1038/hr.2015.62
- Nieto M, Navarro F, Perez-Villar JJ, et al. Roles of chemokines and receptor polarization in NK-target cell interactions. J Immunol. 1998;161(7):3330-3339. doi: 10.4049/jimmunol.161.7.3330
- Bhat H, Zaun G, Hamdan TA, Lang J, et al. Arenavirus induced CCL5 expression causes NK cell-mediated melanoma regression. Front Immunol. 2020;11:1849. doi: 10.3389/fimmu.2020.01849
- Casola A, Garofalo RP, Haeberle H, et al. Multiple CIS regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus. J Virol. 2001;5(14):6428-6439. doi: 10.1128/JVI.75.14.6428–6439.2001
- Genin P, Algarte M´, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kB and IFN-regulatory factor transcription factors. J Immunol. 2000;164(10):5352-5361. doi: 10.4049/jimmunol.164.10.5352
- Casola A, Henderson A, Liu T, Garofalo RP, Brasier AR. Regulation of RANTES promoter activation in alveolar epithelial cells after cytokine stimulation. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1280-L1290. doi: 10.1152/ajplung.00162.2002
- Hashimoto S, Gon Y, Asai Y, et al. p38 MAP kinase regulates RANTES production by TNF-alpha-stimulated human pulmonary vascular endothelial cells. Allergy. 1999;54:1168-1172. doi: 10.1034/j.1398-9995.1999.00224.x
- Lebovic DI, Chao VA, Martini JF, Taylor RN. IL-1β Induction of RANTES (Regulated upon Activation, Normal T Cell Expressed and Secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-kB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86(10):4759-4764. doi: 10.1210/jcem.86.10.7890
- Song A, Chen YF, Thamatrakoln K, Storm T, Krensky A. RFLAT-1: A New zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity. 1999;10:93-103. doi: 10.1016/S1074-7613(00)80010-2
- Nikolcheva T, Pyronnet S, Chou S, et al. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. J Clin Invest. 2002;110(1):119-126. doi: 10.1172/JCI15336
- Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem. 2013;288(49):35437-35451. doi: 10.1074/jbc.M113.505669
- Estell K, Braunstein G, Tucker T, Varga K, Collawn JF, Schwiebert LM. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif. Mol Cell Biol. 2003;23(2):594-606. doi: 10.1128/MCB.23.2.594–606.2003
- Leslie K, Song GJ, Barrick S, et al. Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) and Nuclear Factor-kB (NFkB). J Biol Chem. 2013;288(51):36426-36436. doi: 10.1074/jbc.M113.483339
- Holms R. Pandemics of sexually transmitted infections (STIs): Clinical use of ezrin peptide therapy in Russia to treat and prevent Candida, Chlamydia, Trichomonas vaginalis, Syphilis, HPV and Herpes HSV-1 & 2. Microbiol Infect Dis. 2023;7(3):1-21.
- Salamov G, Holms R, Bessler WG, Ataullakhanov R. Treatment of hepatitis C virus infection with human ezrin peptide one (HEP1) in HIV infected patients. Arzneimittelforschung. 2007;57(7):497-504. doi: 10.1055/s-0031-1296637
- Holms RD. Regulatory/Unfolding Peptides of Ezrin. PCT/ GB00/03566, United States Patent US6, 849, 596 B1 issued 01.02.2005 Examples 1A, 1B and 3; 2005.
- Chulkina M, Negmadjanovc U, Lebedeva E, et al. Synthetic peptide TEKKRRETVEREKE derived from ezrin induces differentiation of NIH/3T3 fibroblasts. Eur J Pharmacol. 2017;811:249-259. doi: 10.1016/j.ejphar.2017.06.033
- Holms RD. Regulatory/Unfolding Peptides of Ezrin. PCT/ GB00/03566, United States Patent US6, 849, 596 B1 issued 01.02.2005 Example 2; 2005.
- Chulkina MM, Pichugin AV, Ataullakhanov RI. Pharmaceutical grade synthetic peptide Thr-Glu-Lys-Lys-Arg-Arg-Glu-Thr- Val-Glu-Arg-Glu-Lys-Glu ameliorates DSS-induced murine colitis by reducing the number and pro-inflammatory activity of colon tissue-infiltrating Ly6G+ granulocytes and Ly6C+ monocytes. Peptides. 2020;132:170364. doi: 10.1016/j.peptides.2020.170364