AccScience Publishing / MI / Online First / DOI: 10.36922/mi.2474
Cite this article
178
Download
2927
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

The therapeutic potential of RANTES/CCL5 across diverse infections and its synergistic enhancement by ezrin peptide RepG3 for long COVID

Rupert Holms1*
Show Less
1 Newal R&D Ltd., London, United Kingdom
MI 2024, 1(1), 1–24; https://doi.org/10.36922/mi.2474
Submitted: 19 December 2023 | Accepted: 4 February 2024 | Published: 6 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The amplification of anti-infective immunity against a wide spectrum of acute and chronic infections caused by various pathogens is mediated by RANTES/CCL5. This chemokine controls infections caused by viruses, bacteria, fungi, and protozoans. In addition, RANTES/CCL5 exhibits anti-cancer effects by increasing NK-cell activity and targeting tumors. RANTES/CCL5 acts by amplifying antigen-specific immunity on mucosal surfaces, programmed T-cell responses, cytotoxic T lymphocytes (CTL), B-cell activation, and antibody production. RANTES/CCL5 exerts its effects by binding to C-C receptors, thereby triggering JAK/STAT signaling and inducing the migration of lymphocytes, NK cells, and monocytes. In the brain, RANTES/CCL5 activates astrocytes and upregulates anti-inflammatory interleukin (IL)-10 expression. Inflammatory cytokines rapidly induce RANTES/CCL5 expression in fibroblasts, epithelial cells, and monocytes/macrophages. In T-cells, RANTES/CCL5 expression is mediated by translational control of the transcription factor RFLAT-1/KLF13, which is responsible for a 3-day delay in RANTES/CCL5 secretion after T-cell activation. A cell membrane multi-protein complex containing CFTR, EBP50, ezrin, and PKC is a dominant regulator of both RANTES/CCL5 and inflammatory cytokine expression. Treatment of a volunteer patient suffering from long COVID/vaccine injury with the ezrin peptide RepG3 alleviated symptoms, substantially reduced serum proinflammatory cytokines to normal levels, and enhanced the expression of RANTES/CCL5. The immune amplification activities of RANTES/CCL5 and the ezrin peptide RepG3 exhibit striking similarities. In contrast, the ezrin peptide RepG3 differs from RANTES/CCL5 in its ability to significantly inhibit the expression of proinflammatory cytokines IL-1β, IL-6, IL-8, IL-13, TNF-α, and proinflammatory chemokines MIP-1α and MIP-1β. The mechanism through which the ezrin peptide RepG3 enhances adaptive immunity likely involves its induction of systemic elevation of RANTES/CCL5 expression and the simultaneous inhibition of proinflammatory cytokine expression.

Keywords
RANTES
CCL5
CCR5
Ezrin peptide
Immune amplification
Anti-inflammatory
SARS-CoV-2
Long COVID
Funding
Newal R&D Ltd., London, UK.
Conflict of interest
The author, Dr. Rupert Holms, is the inventor of ezrin peptide therapy and owns the controlling majority of shares in Newal R&D Limited, which owns granted patents related to ezrin peptide technology in the following territories: Canada, Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland, Indonesia, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Macedonia, Malaysia, Malta, Mexico, Moldova, Monaco, Montenegro, Morocco, Netherlands, New Zealand, Norway, Poland, Portugal, Republic of Korea, Romania, Russian Federation, San Marino, Serbia, Singapore, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, United Kingdom, and the United States of America.
References
  1. Davis H, McCorkell L, Vogel JM, Topol EJ. Long COVID: Major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21:133-146. doi: 10.1038/s41579-022-00846-2

 

  1. Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023;29:2347-2357. doi: 10.1038/s41591-023-02521-2

 

  1. Holms RD. Long COVID (PASC) is maintained by a self-sustaining pro-inflammatory TLR4/RAGE-Loop of S100A8/ A9 > TLR4/RAGE signalling, inducing chronic expression of IL-1b, IL-6 and TNFa: Anti-inflammatory ezrin peptides as potential therapy. Immuno. 2022;2:512-533. doi: 10.3390/immuno2030033

 

  1. Theoharides T. Could SARS-CoV-2 spike protein be responsible for long-COVID syndrome? Mol Neurobiol. 2022;59:1850-1861. doi: 10.1007/s12035-021-02696-0

 

  1. Proal A, VanElzakker MB, Aleman S, et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol. 2023;24:1616-1627. doi: 10.1038/s41590-023-01601-2

 

  1. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins /deathsregis tered weekly inengland and wales provisional / weekending22september 2023 [Last accessed on 2023 Oct 03].

 

  1. Available from: https://www.kff.org/policy-watch/why-do-vaccinated-people-represent-most-covid-19-deaths-right-now [Last accessed on 2024 Jan 17].

 

  1. Available from: https://www.statista.com/statistics/1131428/ excess-deaths-in-england-and-wales [Last accessed on 2024 Jan 17].

 

  1. Deaths by Vaccination Status, England. Available from: https:// www.ons.gov.uk/peoplepopulationandcommunity/birthsdeaths andmarriages/deaths/datasets/deathsbyvaccinationstatus england [Last accessed on 2024 Jan 17].

 

  1. Coronavirus (COVID-19) Latest Insights: Vaccines; 2023. Available from: https://www.ons.gov.uk/ peoplepopulationandcommunity/healthandsocialcare/ conditionsanddiseases/articles/coronaviruscovid19l atestinsights/vaccines#deaths-by-vaccination-status [Last accessed on 2024 Jan 17].

 

  1. Parry PI, Lefringhausen A, Turni C, et al. “Spikeopathy”: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines. 2023;11(8):2287. doi: 10.3390/biomedicines11082287

 

  1. Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects of COVID-19 mRNA vaccines: The spike hypothesis. Trends Mol Med. 2022;28(7):542-554. doi: 10.1016/j.molmed.2022.04.007

 

  1. Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation. 2023;147(7):867-876. doi: 10.1161/CIRCULATIONAHA.122.061025

 

  1. Brogna C, Cristoni S, Marino G, et al. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl. 2023;17(6):e2300048. doi: 10.1002/prca.202300048

 

  1. Aldén M, Olofsson Falla F, Yang D, et al. Intracellular reverse transcription of pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. 2022;44:1115-1126. doi: 10.3390/cimb44030073

 

  1. Khan S, Shafiei M, Longoria C, Schoggins J, Savani S, Hasan Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021;10:e68563. doi: 10.7554/eLife.68563

 

  1. Faist A, Schloer S, Mecate-Zambrano A, et al. Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res. 2023;209:105475. doi: 10.1016/j.antiviral.2022.105475

 

  1. Holms RD, Ataullakhanov RI. Ezrin peptide therapy from HIV to COVID: Inhibition of inflammation and amplification of adaptive anti-viral immunity. Int J Mol Sci. 2021;22:11688. doi: 10.3390/ijms222111688

 

  1. Zeng Z, Lan T, Wei Y, Wei X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 2022;9:12-27. doi: 10.1016/j.gendis.2021.08.004

 

  1. Krensky AM, Ahn YT. Mechanisms of disease: Regulation of RANTES (CCL5) in renal disease. Nat Clin Pract Nephrol. 2007;3(3):164-170. doi: 10.1038/ncpneph0418

 

  1. Sullivan NL, Eickhoff CS, Zhang X, Giddings OK, Lane TE, Hoft DF. Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation. J Immunol. 2011;187(3):1358-1368. doi: 10.4049/jimmunol.1100033

 

  1. Bhat H, Zaun G, Hamdan TA, et al. Arenavirus induced CCL5 expression causes NK cell-mediated melanoma regression. Front Immunol. 2020;11:1849. doi: 10.3389/fimmu.2020.01849

 

  1. Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry EJ. A role for the chemokine RANTES in regulating CD8 T cell responses during chronic viral infection. PLoS Pathog. 2011;7(7):e1002098. doi: 10.1371/journal.ppat.1002098

 

  1. Blanco R, Gómez de Cedrón M, Gámez-Reche L, et al. The chemokine receptor CCR5 links memory CD4(+) T cell metabolism to T cell antigen receptor nanoclustering. Front Immunol. 2021;12:722320. doi: 10.3389/fimmu.2021.722320

 

  1. Culley FJ, Pennycook AM, Tregoning JS, et al. Role of CCL5 (RANTES) in viral lung disease. J Virol. 2006;80:8151-8157. doi: 10.1128/JVI.00496-06

 

  1. Glass WG, Rosenberg HF, Murphy PM. Chemokine regulation of inflammation during acute viral infection. Curr Opin Allergy Clin Immunol. 2003;3:467-473. doi: 10.1097/00130832-200312000-00008

 

  1. Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976-988. doi: 10.1016/j.csbj.2021.01.034

 

  1. Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13):e139834. doi: 10.1172/jci. insight.139834

 

  1. Pérez-García F, Martin-Vicente M, Rojas-García RL, et al. High SARS-CoV-2 Viral load and low CCL5 expression levels in the upper respiratory tract are associated with COVID-19 severity. J Infect Dis. 2022;225:977-982. doi: 10.1093/infdis/jiab604

 

  1. Law AHY, Lee DCW, Cheung BKW, Yim HCH, Lau ASY. Role for nonstructural protein 1 of severe acute respiratory syndrome coronavirus in chemokine dysregulation. J Virol. 2007;81:416-422. doi: 10.1128/JVI.02336-05

 

  1. Islam M, Kalita T, Saikia AK, et al. Significance of RANTES-CCR5 axis and linked downstream immunomodulation in Dengue pathogenesis: A study from Guwahati, India. J Med Virol. 2019;91(12):2066-2073. doi: 10.1002/jmv.25561

 

  1. Duma L, Häussinger D, Rogowski M, Lusso P, Grzesiek S. Recognition of RANTES by extracellular parts of the CCR5 receptor. J Mol Biol. 2007;365(4):1063-1075. doi: 10.1016/j.jmb.2006.10.040

 

  1. Coenen M, Nattermann J. The role of CCR5 in HCV infection. Eur J Med Res. 2010;15:97-101. doi: 10.1186/2047-783X-15-3-97

 

  1. Thio CL, Astemborski J, Thomas R, et al. Interaction between RANTES promoter variant and CCR5Delta32 favors recovery from hepatitis B. J Immunol. 2008;181:7944-7947. doi: 10.4049/jimmunol.181.11.7944

 

  1. Elliott MB, Tebbey PW, Pryharski KS, Scheuer CA, Laughlin TS, Hancock GE. Inhibition of respiratory syncytial virus infection with the CC chemokine RANTES (CCL5). J Med Virol. 2004;73(2):300-308. doi: 10.1002/jmv.20091

 

  1. Silva T, Temerozo JR, do Vale G, et al. The chemokine CCL5 inhibits the replication of influenza A virus through SAMHD1 modulation. Front Cell Infect Microbiol. 2021;11:549020. doi: 10.3389/fcimb.2021.549020

 

  1. Marques RE, Guabiraba R, Del Sarto JL, et al. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology. 2015;145:583-596. doi: 10.1111/imm.12476

 

  1. de-Oliveira-Pinto LM, Marinho CF, Povoa TF, et al. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. PLoS One. 2012;7:e38527. doi: 10.1371/journal.pone.0038527

 

  1. Wuest TR, Carr DJ. The role of chemokines during herpes simplex virus-1 infection. Front Biosci. 2008;13:4862-4872. doi: 10.2741/3045

 

  1. Vilela MC, Lima GK, Rodrigues DH, et al. Absence of CCR5 increases neutrophil recruitment in severe herpetic encephalitis. BMC Neurosci. 2013;14:19. doi: 10.1186/1471-2202-14-19

 

  1. Karim R, Tummers B, Meyers C, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLoS Pathog. 2013;9(5)e1003384. doi: 10.1371/journal.ppat.1003384

 

  1. Monath TP. Treatment of yellow fever. Antiviral Res. 2008;78:116-124. doi: 10.1016/j.antiviral.2007.10.009

 

  1. Sakthivel SK, Singh UP, Singh S, Taub DD, Igietseme JU, Lillard JW Jr. CCL5 regulation of mucosal chlamydial immunity and infection. BMC Microbiol. 2008;8:136. doi: 10.1186/1471-2180 8-136

 

  1. Singh R, Singh S, Briles DE, Taub DD, Hollingshead SK, Lillard JW Jr. CCL5-independent helper T lymphocyte responses to immuno-dominant pneumococcal surface protein A epitopes. Vaccine. 2012;30(6):1181-1190. doi: 10.1016/j.vaccine.2011.12.020

 

  1. Vesosky B, Rottinghaus EK, Stromberg P, Turner J, Beamer G. CCL5 participates in early protection against Mycobacterium tuberculosis. J Leukoc Biol. 2010;87(6):1153-1165. doi: 10.1189/jlb.1109742

 

  1. Richardson JP, Moyes DL. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6(4):327-337. doi: 10.1080/21505594.2015.1004977

 

  1. Huang C, Levitz SM. Stimulation of macrophage inflammatory protein-1a, macrophage inflammatory protein-1b, and RANTES by Candida albicans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J Infect Dis. 2000;181:791-794. doi: 10.1086/315250

 

  1. Govender Y, Chan T, Yamamoto HS, Budnik B, Fichorova RN. The role of small extracellular vesicles in viral-protozoan symbiosis: Lessons from trichomonasvirus in an isogenic host parasite model. Front Cell Infect Microbiol. 2020;10:591172. doi: 10.3389/fcimb.2020.591172

 

  1. Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593-633. doi: 10.1146/annurev.iy.12.040194.003113

 

  1. Mueller A, Strange PG. Mechanisms of internalization and recycling of the chemokine receptor, CCR5. Eur J Biochem. 2004;271:243-252. doi: 10.1046/j.1432-1033.2003.03918.x

 

  1. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15:23. doi: 10.1186/s12964-017-0177-y

 

  1. Wong M, Fish EN. RANTES and MIP-1a activate stats in T cells. J Biol Chem. 1998;273(1):309-314. doi: 10.1074/jbc.273.1.309

 

  1. Steffens CM, Hope TJ. Localization of CD4 and CCR5 in living cells. J Virol. 2003;77(8):4985-4991. doi: 10.1128/JVI.77.8.4985–4991.2003

 

  1. Hammad MM, Kuang YQ, Yan R, Allen H, Dupre DJ. Na+/H+ exchanger regulatory factor-1 is involved in chemokine receptor homodimer CCR5 internalization and signal transduction but does not affect CXCR4 homodimer or CXCR4-CCR5 heterodimer. J Biol Chem. 2010;285:34653-34664. doi: 10.1074/jbc.M110.106591

 

  1. Oppermann M. Chemokine receptor CCR5: Insights into structure, function, and regulation. Cell Signal. 2004;16:1201-1210. doi: 10.1016/j.cellsig.2004.04.007

 

  1. Rieske P, Pongubala JM. AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J Biol Chem. 2001;276(11):8460-8468. doi: 10.1074/jbc.M007482200

 

  1. Kanada S, Nishiyama C, Nakano N, et al. Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood. 2011;117(7):2211-2222. doi: 10.1182/blood-2010-06-291898

 

  1. Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010;185:6413-6419. doi: 10.4049/jimmunol.1001829

 

  1. Amella CA, Sherry B, Shepp DH, Schmidtmayerova H. Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP. J Virol. 2005;79(9):5625-5631. doi: 10.1128/JVI.79.9.5625–5631.2005

 

  1. Zhao J, Ma L, Wu YL, Wang P, Hu W, Pei G. Chemokine receptor CCR5 functionally couples to inhibitory G proteins and undergoes desensitization. J Cell Biochem. 1998;71:36-45. doi: 10.1002/(sici)1097-4644(19981001)71:1<36:aid-jcb4>3.0.co;2-2

 

  1. Lorenzen E, Ceraudo E, Berchiche YA, et al. G protein subtype-specific signaling bias in a series of CCR5 chemokine analogs. Sci Signal. 2018;11:eaao6152. doi: 10.1126/scisignal.aao6152

 

  1. Pollok-Kopp B, Schwarze K, Baradari VK, Oppermann M. Analysis of ligand-stimulated CC chemokine receptor 5 (CCR5) phosphorylation in intact cells using phosphosite-specific antibodies. J Biol Chem. 2003;278(4):2190-2198. doi: 10.1074/jbc.M209844200

 

  1. Glorieux C, Huang P. Regulation of CD137 expression through K-Ras signaling in pancreatic cancer cells. Cancer Commun (Lond). 2019;39:41. doi: 10.1186/s40880-019-0386-4

 

  1. Lillard J, Boyaka P, Taub D, McGhee J. RANTES potentiates antigen-specific mucosal immune responses. J Immunol. 2001;166(1):162-169. doi: 10.4049/jimmunol.166.1.162

 

  1. Li N, Mirzakhani H, Kiefer A, et al. Regulated on activation, normal T cell Expressed and secreted (RANTES) drives the resolution of allergic asthma. iScience. 2021;24:103163. doi: 10.1016/j.isci.2021.103163

 

  1. Appay V, Dunbar PR, Cerundolo V, et al. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol. 2000;12(8):1173-1182.

 

  1. Appay V, Dunbar PR, Cerundolo V, McMichael A, Czaplewski L, Rowland-Jones S. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol. 2000;12(8):1173-1182.

 

  1. Li J, Tu Y, Wen J, Yao F, Wei W, Sun S. Role for ezrin in breast cancer cell chemotaxis to CCL5. Oncol Rep. 2010;24(4):965-971. doi: 10.3892/or.2010.965

 

  1. Zhang Y, Zhai Q, Luo Y, Dorf ME. RANTES-mediated chemokine transcription in astrocytes involves activation and translocation of p90 ribosomal S6 protein kinase (RSK). J Biol Chem. 2002;277(21):19042-19048. doi: 10.1074/jbc.M112442200.

 

  1. Kim HY, Cha HJ, Kim HS. CCL5 upregulates IL-10 expression and partially mediates the antihypertensive effects of IL-10 in the vascular smooth muscle cells of spontaneously hypertensive rats. Hypertens Res. 2015;38:666-674. doi: 10.1038/hr.2015.62

 

  1. Nieto M, Navarro F, Perez-Villar JJ, et al. Roles of chemokines and receptor polarization in NK-target cell interactions. J Immunol. 1998;161(7):3330-3339. doi: 10.4049/jimmunol.161.7.3330

 

  1. Bhat H, Zaun G, Hamdan TA, Lang J, et al. Arenavirus induced CCL5 expression causes NK cell-mediated melanoma regression. Front Immunol. 2020;11:1849. doi: 10.3389/fimmu.2020.01849

 

  1. Casola A, Garofalo RP, Haeberle H, et al. Multiple CIS regulatory elements control RANTES promoter activity in alveolar epithelial cells infected with respiratory syncytial virus. J Virol. 2001;5(14):6428-6439. doi: 10.1128/JVI.75.14.6428–6439.2001

 

  1. Genin P, Algarte M´, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kB and IFN-regulatory factor transcription factors. J Immunol. 2000;164(10):5352-5361. doi: 10.4049/jimmunol.164.10.5352

 

  1. Casola A, Henderson A, Liu T, Garofalo RP, Brasier AR. Regulation of RANTES promoter activation in alveolar epithelial cells after cytokine stimulation. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1280-L1290. doi: 10.1152/ajplung.00162.2002

 

  1. Hashimoto S, Gon Y, Asai Y, et al. p38 MAP kinase regulates RANTES production by TNF-alpha-stimulated human pulmonary vascular endothelial cells. Allergy. 1999;54:1168-1172. doi: 10.1034/j.1398-9995.1999.00224.x

 

  1. Lebovic DI, Chao VA, Martini JF, Taylor RN. IL-1β Induction of RANTES (Regulated upon Activation, Normal T Cell Expressed and Secreted) chemokine gene expression in endometriotic stromal cells depends on a nuclear factor-kB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86(10):4759-4764. doi: 10.1210/jcem.86.10.7890

 

  1. Song A, Chen YF, Thamatrakoln K, Storm T, Krensky A. RFLAT-1: A New zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity. 1999;10:93-103. doi: 10.1016/S1074-7613(00)80010-2

 

  1. Nikolcheva T, Pyronnet S, Chou S, et al. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. J Clin Invest. 2002;110(1):119-126. doi: 10.1172/JCI15336

 

  1. Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem. 2013;288(49):35437-35451. doi: 10.1074/jbc.M113.505669

 

  1. Estell K, Braunstein G, Tucker T, Varga K, Collawn JF, Schwiebert LM. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif. Mol Cell Biol. 2003;23(2):594-606. doi: 10.1128/MCB.23.2.594–606.2003

 

  1. Leslie K, Song GJ, Barrick S, et al. Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) and Nuclear Factor-kB (NFkB). J Biol Chem. 2013;288(51):36426-36436. doi: 10.1074/jbc.M113.483339

 

  1. Holms R. Pandemics of sexually transmitted infections (STIs): Clinical use of ezrin peptide therapy in Russia to treat and prevent Candida, Chlamydia, Trichomonas vaginalis, Syphilis, HPV and Herpes HSV-1 & 2. Microbiol Infect Dis. 2023;7(3):1-21.

 

  1. Salamov G, Holms R, Bessler WG, Ataullakhanov R. Treatment of hepatitis C virus infection with human ezrin peptide one (HEP1) in HIV infected patients. Arzneimittelforschung. 2007;57(7):497-504. doi: 10.1055/s-0031-1296637

 

  1. Holms RD. Regulatory/Unfolding Peptides of Ezrin. PCT/ GB00/03566, United States Patent US6, 849, 596 B1 issued 01.02.2005 Examples 1A, 1B and 3; 2005.

 

  1. Chulkina M, Negmadjanovc U, Lebedeva E, et al. Synthetic peptide TEKKRRETVEREKE derived from ezrin induces differentiation of NIH/3T3 fibroblasts. Eur J Pharmacol. 2017;811:249-259. doi: 10.1016/j.ejphar.2017.06.033

 

  1. Holms RD. Regulatory/Unfolding Peptides of Ezrin. PCT/ GB00/03566, United States Patent US6, 849, 596 B1 issued 01.02.2005 Example 2; 2005.

 

  1. Chulkina MM, Pichugin AV, Ataullakhanov RI. Pharmaceutical grade synthetic peptide Thr-Glu-Lys-Lys-Arg-Arg-Glu-Thr- Val-Glu-Arg-Glu-Lys-Glu ameliorates DSS-induced murine colitis by reducing the number and pro-inflammatory activity of colon tissue-infiltrating Ly6G+ granulocytes and Ly6C+ monocytes. Peptides. 2020;132:170364. doi: 10.1016/j.peptides.2020.170364
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing