AccScience Publishing / JCBP / Online First / DOI: 10.36922/JCBP025390076
MINI-REVIEW

The mind awake at night: Glymphatic dysfunction as a mechanistic bridge linking multifactorial sleep disturbances to neurodegeneration

Josué Camberos-Barraza1 Karyme M. Alemán-Villa1 Alberto K. De la Herrán-Arita1*
Show Less
1 Department of Neurosciences, School of Medicine, Autonomous University of Sinaloa, Culiacán, Sinaloa, México
Received: 26 September 2025 | Revised: 7 November 2025 | Accepted: 26 November 2025 | Published online: 9 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Chronic sleep disorders are a major modifiable risk factor for neurodegenerative diseases. However, the mechanisms linking the diverse etiologies of sleep disorders to neuropathology are not fully understood. This review synthesizes evidence to position glymphatic system dysfunction as a critical “mechanistic bridge” linking the multifactorial drivers of disordered sleep, ranging from psychophysiological hyperarousal to intermittent hypoxia and circadian misalignment, to the pathogenesis of neurodegeneration. The brain’s glymphatic system is essential for clearing neurotoxins, such as amyloid-β and α-synuclein, a process that is most efficient during deep, non-rapid eye movement sleep. This review outlines how distinct sleep-disrupting conditions, despite their different origins, converge on a final common pathway: The failure to establish the low-noradrenergic state required for effective glymphatic clearance. This suppression provides a direct mechanism linking poor sleep to the accumulation of toxic proteins that are hallmarks of neurodegenerative diseases. We also explore the evidence for a bidirectional, self-perpetuating cycle, where initial protein accumulation can, in turn, damage sleep-regulating brain nuclei, further degrading sleep and accelerating pathology. This framework reframes the management of all sleep disorders, not merely as symptom control, but as a tangible strategy for neuroprotection.

Keywords
Glymphatic system
Sleep apnea
Insomnia
Neurodegeneration
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Blackwell T, Yaffe K, Ancoli-Israel S, et al. Poor sleep is associated with impaired cognitive function in older women: The Study of Osteoporotic Fractures. J Gerontol A Biol Sci Med Sci. 2006;61(4):405-410. doi: 10.1093/gerona/61.4.405

 

  1. Dorsey ER, De Miranda BR, Hussain S, et al. Environmental toxicants and Parkinson’s disease: Recent evidence, risks, and prevention opportunities. Lancet Neurol. 2025;24(11):976-986. doi: 10.1016/S1474-4422(25)00287-X

 

  1. Pase MP, Himali JJ, Grima NA, et al. Sleep architecture and the risk of incident dementia in the community. Neurology. 2017;89(12):1244-1250. doi: 10.1212/WNL.0000000000004373

 

  1. Sabia S, Fayosse A, Dumurgier J, et al. Association of sleep duration in middle and old age with incidence of dementia. Nat Commun. 2021;12(1):2289. doi: 10.1038/s41467-021-22354-2

 

  1. Alemán-Villa KM, Sosa-Arámbula HJ, Armienta-Rojas DA, et al. The role of melatonin timing on short-term memory retention during sleep restriction. Psychopharmacology (Berl). 2025. doi: 10.1007/s00213-025-06887-8

 

  1. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748

 

  1. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373-377. doi: 10.1126/science.1241224

 

  1. Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: Past, present, and future. Annu Rev Pathol. 2018;13:379-394. doi: 10.1146/annurev-pathol-051217-111018

 

  1. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1

 

  1. Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180-16193. doi: 10.1523/JNEUROSCI.3020-14.2014

 

  1. Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC. Sleep, glial function, and the endocannabinoid system: Implications for neuroinflammation and sleep disorders. Int J Mol Sci. 2024;25(6):3160. doi: 10.3390/ijms25063160

 

  1. Osuna-Ramos JF, Camberos-Barraza J, Torres- Mondragón LE, et al. Interplay between the glymphatic system and the endocannabinoid system: Implications for brain health and disease. Int J Mol Sci. 2023;24(24):17458. doi: 10.3390/ijms242417458

 

  1. Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutant α-synuclein. Transl Neurodegener. 2019;8:7. doi: 10.1186/s40035-019-0147-y

 

  1. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1434. doi: 10.1038/s41467-017-01484-6

 

  1. Hablitz LM, Vinitsky HS, Sun Q, et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447. doi: 10.1126/sciadv.aav5447

 

  1. Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628-631. doi: 10.1126/science.aax5440

 

  1. Rábago-Monzón AR, Osuna-Ramos JF, Armienta- Rojas DA, et al. Stress-induced sleep dysregulation: The roles of astrocytes and microglia in neurodegenerative and psychiatric disorders. Biomedicines. 2025;13(5):1121. doi: 10.3390/biomedicines13051121

 

  1. Torres-Mondragón LE, León-Pimentel LC, Pérez- Tamayo DE, et al. The endocannabinoid system: A new frontier in addressing psychosomatic challenges. J Clin Basic Psychosom. 2024;2(1):2288. doi: 10.36922/jcbp.2288

 

  1. Bellesi M, de Vivo L, Chini M, et al. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci. 2017;37(21):5263-5273. doi: 10.1523/JNEUROSCI.3981-16.2017

 

  1. Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018;115(17):4483-4488. doi: 10.1073/pnas.1721694115

 

  1. Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 2016;39(8):552-566. doi: 10.1016/j.tins.2016.05.002

 

  1. Lucey BP, Hicks TJ, McLeland JS, et al. Effect of sleep on overnight CSF amyloid-β kinetics. Ann Neurol. 2018;83(1):197-204. doi: 10.1002/ana.25117

 

  1. Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med Rev. 2020;50:101250. doi: 10.1016/j.smrv.2019.101250

 

  1. Beaudin AE, Younes M, Gerardy B, et al. Association between sleep microarchitecture and cognition in obstructive sleep apnea. Sleep. 2024;47(12):zsae141. doi: 10.1093/sleep/zsae141

 

  1. Lui KK, Dave A, Sprecher KE, et al. Older adults at greater risk for Alzheimer’s disease show stronger associations between sleep apnea severity in REM sleep and verbal memory. Alzheimers Res Ther. 2024;16(1):102. doi: 10.1186/s13195-024-01446-3

 

  1. Romero-ElKhayat L, Dakterzada F, Huerto R, et al. Inflammatory and redox blood gene expression fingerprint of severe obstructive sleep apnoea in patients with mild Alzheimer’s disease. J Inflamm Res. 2025;18:1609-1621. doi: 10.2147/JIR.S475776

 

  1. Li G, Liu J, Guo M, et al. Chronic hypoxia leads to cognitive impairment by promoting HIF-2α-mediated ceramide catabolism and alpha-synuclein hyperphosphorylation. Cell Death Discov. 2022;8(1):473. doi: 10.1038/s41420-022-01260-6

 

  1. Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):4411. doi: 10.1038/s41467-020-18115-2

 

  1. Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004-1008. doi: 10.1126/science.aah4968

 

  1. Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer’s disease: Synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener. 2022;17(1):35. doi: 10.1186/s13024-022-00537-9

 

  1. Farajnia S, Michel S, Deboer T, et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus. J Neurosci. 2012;32(17):5891-5899. doi: 10.1523/JNEUROSCI.0469-12.2012

 

  1. Zamani A, Walker AK, Wright DK. Glymphatic dysfunction and neurodegeneration in ALS: Longitudinal insights from rNLS8 TDP-43 mice. Neurobiol Dis. 2025;206:106832. doi: 10.1016/j.nbd.2025.106832

 

  1. Vanya, Kumari S, Bagri K, Deshmukh R. Tangles and plaques: A deep dive into the pathological hallmarks of Alzheimer’s disease. Neuroscience. 2025;590:170-185. doi: 10.1016/j.neuroscience.2025.10.050

 

  1. Zhou T, Ye W, Chen B, et al. Sleep deprivation and risk for Parkinson’s disease: Evidence and therapeutic implications. J Neurol. 2025;272(11):740. doi: 10.1007/s00415-025-13407-3

 

  1. Käufer C, Stanojlović M, Schidlitzki A, Bonsberger J, Storch A, Richter F. Alterations in non-REM sleep and EEG spectra precede REM-sleep deficits in a model of synucleinopathy. J Parkinsons Dis. 2025;15(2):311-328. doi: 10.1177/1877718X241310723

 

  1. Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11(4):301-307. doi: 10.1038/nrm2873

 

  1. Brahic M, Bousset L, Bieri G, et al. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 2016;131(4):539-548. doi: 10.1007/s00401-016-1538-0

 

  1. Feiler MS, Strobel B, Freischmidt A, et al. TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol. 2015;211(4):897-911. doi: 10.1083/jcb.201504057

 

  1. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-133. doi: 10.1126/science.1134108

 

  1. Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain. 2019; 142(6):1503-1527. doi: 10.1093/brain/awz099

 

  1. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology-a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115-119. doi: 10.1038/nrneurol.2013.269

 

  1. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215-225. doi: 10.1016/j.nbd.2016.05.015

 

  1. Alemán-Villa KM, Camberos-Barraza J, Armienta- Rojas DA, et al. Neuroinflammation across the spectrum of neurodegenerative diseases: Mechanisms and therapeutic frontiers. Neuroimmunomodulation. 2025;20:1-33. doi: 10.1159/000548021

 

  1. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463-477. doi: 10.1038/nri3705

 

  1. Heneka MT, van der Flier WM, Jessen F, et al. Neuroinflammation in Alzheimer disease. Nat Rev Immunol. 2025(5):321-352. doi: 10.1038/s41577-024-01104-7

 

  1. Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358-372. doi: 10.1038/nrn3880

 

  1. Sofroniew MV. Astrogliosis. Cold Spring Harb Perspect Biol. 2015;7(2):a020420. doi: 10.1101/cshperspect.a020420

 

  1. Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712-716. doi: 10.1126/science.aad8373

 

  1. Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91-99. doi: 10.1001/jamaneurol.2016.4370

 

  1. Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 2019;15(1):158-167. doi: 10.1016/j.jalz.2018.07.222

 

  1. Kisler K, Nelson AR, Rege SV, et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 2017;20(3):406-416. doi: 10.1038/nn.4489

 

  1. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005-1007. doi: 10.1126/science.1180962

 

  1. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845-861. doi: 10.1002/ana.24271

 

  1. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond). 2017;131(17):2257-2274. doi: 10.1042/CS20160381

 

  1. Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity using the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35(4):172-178. doi: 10.1007/s11604-017-0617-z

 

  1. Shang Y, Yu L, Xing H, et al. Diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) demonstrates that sleep disorders exacerbate glymphatic circulatory impairment and cognitive impairment in patients with Alzheimer’s disease. Nat Sci Sleep. 2024;16:2205-2215. doi: 10.2147/NSS.S496607

 

  1. Saito Y, Kamagata K, Uchida W, et al. The improvement technique for reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function. Jpn J Radiol. 2023;41(9):1029-1030. doi: 10.1007/s11604-023-01421-2

 

  1. Leone R, Kobeleva X, Rowe B, et al. Alterations in MRI-visible perivascular spaces precede dementia diagnosis by 18 years in autosomal dominant Alzheimer’s disease. Alzheimers Dement. 2025;21(8):e70588. doi: 10.1002/alz.70588

 

  1. Ringstad G, Valnes LM, Dale AM, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3(13):e121537. doi: 10.1172/jci.insight.121537

 

  1. Kizakevich PN, Eckhoff RP, Lewis GF, et al. Biofeedback-assisted resilience training for traumatic and operational stress: Preliminary analysis of a self-delivered digital health methodology. JMIR Mhealth Uhealth. 2019;7(9):e12590. doi: 10.2196/12590

 

  1. Lilius TO, Blomqvist K, Håkansson K, et al. Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J Control Release. 2019;304:29-38. doi: 10.1016/j.jconrel.2019.05.005

 

  1. He XF, Liu DX, Zhang Q, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged APP/PS1 model mice. Neurosci Lett. 2017;636:64-70. doi: 10.3389/fnmol.2017.00144
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Print ISSN: 3060-8562, Published by AccScience Publishing