The gut–brain axis: Collective impact of psychosomatic conditions and gut microbiota on health and disease

The gut–brain axis represents a dynamic, bidirectional communication system linking the central nervous system and the gastrointestinal (GI) tract through neural, hormonal, and immune pathways. A growing body of research highlights the role of gut microbiota in modulating neuroinflammatory responses, neurotransmitter production, and vagal nerve signaling. However, while numerous reviews have addressed gut microbiota’s impact on health and disease, few have systematically compared findings across different study models or emphasized recent advances in therapeutic interventions. Hence, this review consolidates present research on the interplay between gut microbiota, psychological conditions (stress, anxiety, and depression), and GI disorders (irritable bowel syndrome and inflammatory bowel disease). This review explores the latest methodologies, including genomic approaches and metabolomics, to understand microbial signatures in health and disease. Furthermore, it examines therapeutic interventions, including probiotics, pre-biotics, dietary modifications, and fecal microbiota transplantation, and their efficacy across different studies. The gut–brain axis plays a crucial role in health and disease through complex interactions between gut microbiota, psychological conditions, and GI disorders. By consolidating recent research and advancements in therapeutic interventions, this review provides a comprehensive perspective on emerging methodologies and potential treatments. A deeper understanding of these mechanisms may pave the way for more effective, personalized therapeutic strategies.
- Goldstein A, Hofstra R, Burns A. Building a brain in the gut: Development of the enteric nervous system. Clin Genet. 2013;83(4):307-316. doi: 10.1111/cge.12054
- Gershon MD. The enteric nervous system: A second brain. Hosp Pract. 1999;34(7):31-52. doi: 10.3810/hp.1999.07.153
- Legan TB, Lavoie B, Mawe GM. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol Motil. 2022;34(10):e14346. doi: 10.1111/nmo.14346
- Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast Cell-Prostaglandin E2. Gastroenterology. 2022;162(7):1962-1974.e6. doi: 10.1053/j.gastro.2022.02.016
- Rusch JA, Layden BT, Dugas LR. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol. 2023;14:1130689. doi: 10.3389/fendo.2023.1130689
- Jahnke JR, Roach J, Azcarate-Peril MA, Thompson AL. Maternal precarity and HPA axis functioning shape infant gut microbiota and HPA axis development in humans. PLoS One. 2021;16(5):e0251782. doi: 10.1371/journal.pone.0251782
- Candelli M, Franza L, Pignataro G, et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci. 2021;22(12):6242. doi: 10.3390/ijms22126242
- Surd AO, Răducu C, Răducu E, Ihuț A, Munteanu C. Lamina propria and GALT: Their relationship with different gastrointestinal diseases, including cancer. Gastrointest Disord. 2024;6(4):947-963. doi: 10.3390/gidisord6040066
- Camberos-Barraza J, Guadrón-Llanos AM, De La Herrán- Arita AK. The gut microbiome-neuroglia axis: Implications for brain health, inflammation, and disease. Neuroglia. 2024;5(3):254-273. doi: 10.3390/neuroglia5030018
- Hays KE, Pfaffinger JM, Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microb. 2024;16(1):2393270. doi: 10.1080/19490976.2024.2393270
- Sarubbo F, Cavallucci V, Pani G. The influence of gut microbiota on neurogenesis: Evidence and hopes. Cells. 2022;11(3):382. doi: 10.3390/cells11030382
- Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-gut-brain axis regulation of adult hippocampal neurogenesis. Brain Plast. 2022;8(1):97-119. doi: 10.3233/bpl-220141
- Agnihotri N, Mohajeri MH. Involvement of intestinal microbiota in adult neurogenesis and the expression of Brain-Derived neurotrophic factor. Int J Mol Sci. 2022;23(24):15934. doi: 10.3390/ijms232415934
- Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. doi: 10.1016/j.ebiom.2022.103908
- Anand N, Gorantla VR, Chidambaram SB. The ROLE of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells. 2022;12(1):54. doi: 10.3390/cells12010054
- Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. doi: 10.1038/s41392-022-00974-4
- Haneishi Y, Furuya Y, Hasegawa M, Picarelli A, Rossi M, Miyamoto J. Inflammatory bowel diseases and gut microbiota. Int J Mol Sci. 2023;24(4):3817. doi: 10.3390/ijms24043817
- Wiredu Ocansey DK, Hang S, Yuan X, et al. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes. 2023;15(1):2176118. doi: 10.1080/19490976.2023.2176118
- Wang S, Zhou S, Han Z, et al. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol. 2024;15:1384270. doi: 10.3389/fimmu.2024.1384270
- Nie K, Ma K, Luo W, et al. Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front Cell Infect Microbiol. 2021;11:757718. doi: 10.3389/fcimb.2021.757718
- Krishnamurthy HK, Pereira M, Bosco J, et al. Gut commensals and their metabolites in health and disease. Front Microbiol. 2023;14:1244293. doi: 10.3389/fmicb.2023.1244293
- Gradisteanu Pircalabioru G, Ilie I, Oprea L, et al. Microbiome, mycobiome and related metabolites alterations in patients with metabolic syndrome-A pilot study. Metabolites. 2022;12(3):218. doi: 10.3390/metabo12030218
- Qin Q, Yan S, Yang Y, et al. A metagenome-wide association study of the gut microbiome and metabolic syndrome. Front Microbiol. 2021;12:682721. doi: 10.3389/fmicb.2021.682721
- Sawant S, Meganathan P, Vedagiri H. Gut microbial dysbiosis induced exacerbations influence the progression of colorectal cancer. Biol Bull Rev. 2024;14(6):724-739. doi: 10.1134/S2079086424600528
- Aho VT, Houser MC, Pereira PA, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener. 2021;16:6. doi: 10.1186/s13024-021-00427-6
- Bagavant H, Araszkiewicz AM, Ingram JK, et al. Immune response to Enterococcus gallinarum in lupus patients is associated with a subset of lupus-associated autoantibodies. Front Immunol. 2021;12:635072. doi: 10.3389/fimmu.2021.635072
- Rasouli-Saravani A, Jahankhani K, Moradi S, et al. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother. 2023;162:114620. doi: 10.1016/j.biopha.2023.114620
- Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes. 2023;15(2):2290643. doi: 10.1080/19490976.2023.2290643
- Noguera‐Fernández N, Candela‐González J, Orenes‐ Piñero E. Probiotics, prebiotics, fecal microbiota transplantation, and dietary patterns in inflammatory bowel disease. Mol Nutr Food Res. 2024;68(18):2400429. doi: 10.1002/mnfr.202400429
- Luck B, Horvath TD, Engevik KA, et al. Neurotransmitter profiles are altered in the gut and brain of mice mono-associated with Bifidobacterium dentium. Biomolecules. 2021;11(8):1091. doi: 10.3390/biom11081091
- Qu S, Yu Z, Zhou Y, et al. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res. 2024;2024:127858. doi: 10.1016/j.micres.2024.127858
- Koutsokostas C, Merkouris E, Goulas A, et al. Gut microbes associated with neurodegenerative disorders: A comprehensive review of the literature. Microorganisms. 2024;12(8):1735. doi: 10.3390/microorganisms12081735
- Nikolova VL, Pelton L, Moulton CD, et al. The Prevalence and incidence of irritable bowel syndrome and inflammatory bowel disease in depression and bipolar disorder: A systematic review and meta-analysis. Psychosom Med. 2022;84(3):313-324. doi: 10.1097/psy.0000000000001046
- Lakshmanan AP, Mingione A, Pivari F, et al. Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Front Nutr. 2022;9:930883. doi: 10.3389/fnut.2022.930883
- Archana N, Gupta AK, Noumani A, et al. Gut microbiota derived short‐chain fatty acids in physiology and pathology: An update. Cell Biochem Funct. 2024;42(7):e4108. doi: 10.1002/cbf.4108
- Cameron G, Nguyen T, Ciula M, Williams SJ, Godfrey DI. Glycolipids from the gut symbiont Bacteroides fragilis are agonists for natural killer T cells and induce their regulatory differentiation. Chem Sci. 2023;14(29):7887-7896. doi: 10.1039/d3sc02124f
- Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. doi: 10.3390/microorganisms9122415
- Camilleri M, Vella A. What to do about the leaky gut. Gut. 2021;71(2):424-435. doi: 10.1136/gutjnl-2021-325428
- Usuda H, Okamoto T, Wada K. Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. Int J Mol Sci. 2021;22(14):7613. doi: 10.3390/ijms22147613
- Senarath RM, Burton M, Fernando WM, et al. Role of short chain fatty acids on astrocytes and microglia in Alzheimer’s disease brain. Int J Food Sci Technol. 2021;59(9):5902-5911. doi: 10.1111/ijfs.17380
- Xu J, He G, Chen L, et al. Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5) signaling pathways improved the hepatic lipid metabolism in hybrid grouper. Aquac Rep. 2021;22:100997. doi: 10.1016/j.aqrep.2021.100997
- Deckmyn B, Domenger D, Blondel C, et al. Farnesoid X receptor activation in brain alters brown adipose tissue function via the sympathetic system. Front Mol Neurosci. 2022;14:808603. doi: 10.3389/fnmol.2021.808603
- Parkin K, Christophersen CT, Verhasselt V, Cooper MN, Martino D. Risk factors for gut dysbiosis in early life. Microorganisms. 2021;9(10):2066. doi: 10.3390/microorganisms9102066
- Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol. 2022;13:906258. doi: 10.3389/fimmu.2022.906258
- Baldelli V, Scaldaferri F, Putignani L, Del Chierico F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms. 2021;9(4):697. doi: 10.3390/microorganisms9040697
- Anto L, Blesso CN. Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. J Nutr Biochem. 2022;105:108991. doi: 10.1016/j.jnutbio.2022.108991
- Zhang Y, Wang Y, Ke B, Du J. TMAO: How gut microbiota contributes to heart failure. Transl Res. 2020;228:109-125. doi: 10.1016/j.trsl.2020.08.007
- Huang F, Wu X. Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front Cell Dev Biol. 2021;9:649103. doi: 10.3389/fcell.2021.649103
- Zhou M, Fan Y, Xu L, et al. Microbiome and tryptophan metabolomics analysis in adolescent depression: roles of the gut microbiota in the regulation of tryptophan-derived neurotransmitters and behaviors in human and mice. Microbiome. 2023;11(1):145. doi: 10.1186/s40168-023-01589-9
- Zhong J, Lan W, Feng Y, et al. Associations between dysbiosis gut microbiota and changes of neurotransmitters and short-chain fatty acids in valproic acid model rats. Front Physiol. 2023;14:1077821. doi: 10.3389/fphys.2023.1077821
- Lugo-Huitrón R, Muñiz PU, Pineda B, Pedraza-Chaverrí J, Ríos C, La Cruz VP. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013;2013:104024. doi: 10.1155/2013/104024
- Hestad K, Alexander J, Rootwelt H, Aaseth JO. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases. Biomolecules. 2022;12(7):998. doi: 10.3390/biom12070998
- Ho TC, Teresi GI, Segarra JR, et al. Higher levels of pro-inflammatory cytokines are associated with higher levels of glutamate in the anterior cingulate cortex in depressed adolescents. Front Psychiatry. 2021;12:642976. doi: 10.3389/fpsyt.2021.642976
- Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine. 2023;174:156477. doi: 10.1016/j.cyto.2023.156477
- Yu H, Chen Z. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2010;32(1):3-11. doi: 10.1038/aps.2010.184
- Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, et al. Sleep, glial function, and the endocannabinoid system: Implications for neuroinflammation and sleep disorders. Int J Mol Sci. 2024;25(6):3160. doi: 10.3390/ijms25063160
- Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci. 2011;108(38):16050-16055. doi: 10.1073/pnas.1102999108
- Duranti S, Ruiz L, Lugli GA, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep. 2020;10(1):14112. doi: 10.1038/s41598-020-70986-z
- Parolisi S, Montanari C, Borghi E, et al. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol Res 2023;197:106952 doi: 10.1016/j.phrs.2023.106952
- Correia AS, Vale N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci. 2022;23(15):8493. doi: 10.3390/ijms23158493
- Zong L, Ge M, Wang J, et al. Causal association between kynurenine and depression investigated using two-sample Mendelian randomization. Sci Rep. 2024;14(1):1821. doi: 10.1038/s41598-024-52442-4
- El-Defrawy SR, Boegman RJ, Jhamandas K, Beninger RJ. The neurotoxic actions of quinolinic acid in the central nervous system. Can J Physiol Pharmacol. 1986;64(3):369-375. doi: 10.1139/y86-060
- Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double‐edged sword? CNS Neurosci Ther. 2021;28(1):19-35. doi: 10.1111/cns.13768
- Tremblay A, Lingrand L, Maillard M, Feuz B, Tompkins TA. The effects of psychobiotics on the microbiota-gut-brain axis in early-life stress and neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2020;105:110142.
- Torres-Mondragón LE, León-Pimentel LC, Pérez- Tamayo DE, De La Herrán Arita AK. The endocannabinoid system: A new frontier in addressing psychosomatic challenges. Deleted J. 2024;2(1):2288. doi: 10.36922/jcbp.2288
- Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2013;63(8):1293-1299. doi: 10.1136/gutjnl-2013-305690
- Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of Irritable Bowel Syndrome: Contribution of Neonatal Stress models. Pediatr Res. 2007;62(3):240-245. doi: 10.1203/pdr.0b013e3180db2949
- Yang H, Li M, Zhou M, et al. Links between gut dysbiosis and neurotransmitter disturbance in chronic restraint stress-induced depressive behaviours: The role of inflammation. Inflammation. 2021;44(6):2448-2462. doi: 10.1007/s10753-021-01514-y
- Ma L, Yan Y, Webb RJ, et al. Psychological stress and gut microbiota composition: A systematic review of human studies. Neuropsychobiology. 2023;82(5):247-262. doi: 10.1159/000533131
- Rogers GB, Keating DJ, Young RL, Wong M, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry. 2016;21(6):738-748. doi: 10.1038/mp.2016.50
- Aizawa E, Tsuji H, Asahara T, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254-257. doi: 10.1016/j.jad.2016.05.038
- Han S, Kim DH. Lactobacillus mucosae and Bifidobacterium longum synergistically alleviate immobilization stress-induced anxiety/depression in mice by suppressing gut dysbiosis. J Microbiol Biotechnol. 2019;29(9):1369-1374. doi: 10.4014/jmb.1907.07044
- Mönnikes H, Tebbe J, Hildebrandt M, et al. Role of stress in functional gastrointestinal disorders. Dig Dis. 2001;19(3):201-211. doi: 10.1159/000050681
- Qin H, Cheng C, Tang X, Bian Z. Impact of psychological stress on irritable bowel syndrome. World J Gastroenterol. 2014;20(39):14126. doi: 10.3748/wjg.v20.i39.14126
- De Punder K, Pruimboom L. Stress induces endotoxemia and Low-Grade inflammation by increasing barrier permeability. Front Immunol. 2015;6:223. doi: 10.3389/fimmu.2015.00223
- Cho D, Hong J, Kim Y, et al. Role of gut-derived bacterial lipopolysaccharide and peripheral TLR4 in immobilization stress-induced itch aggravation in a mouse model of atopic dermatitis. Sci Rep. 2024;14(1):6263. doi: 10.1038/s41598-024-56936-z
- Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern Emerg Med. 2023;19(2):275-293. doi: 10.1007/s11739-023-03374-w
- Camacho-Zamora A, Camberos-Barraza J, Rábago- Monzón ÁR, Sosa-Arámbula HJ, De La Herrán-Arita AK. Psychosomatic influences on insomnia: Mechanisms, diagnosis, and treatment strategies. Deleted J. 2024;3:4588. doi: 10.36922/jcbp.4588
- Sanada K, Nakajima S, Kurokawa S, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis. J Affect Disord. 2020;266:1-13. doi: 10.1016/j.jad.2020.01.102
- Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition. 2015;32(3):315-320. doi: 10.1016/j.nut.2015.09.003
- Foster JA, Neufeld KM. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305-312. doi: 10.1016/j.tins.2013.01.005
- Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2010b;23(3):255-264.e119. doi: 10.1111/j.1365-2982.2010.01620.x
- Kang D, Park JG, Ilhan ZE, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322. doi: 10.1371/journal.pone.0068322
- Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci. 2014;264(8):651-660. doi: 10.1007/s00406-014-0502-z
- Maier KJ, Al’Absi M. Toward a biopsychosocial ecology of the human microbiome, brain-gut axis, and health. Psychosom Med. 2017;79(8):947-957. doi: 10.1097/PSY.0000000000000515
- Kabra N, Nadkarni A. Prevalence of depression and anxiety in irritable bowel syndrome: A clinic based study from India. Indian J Psychiatry. 2013;55(1):77. doi: 10.4103/0019-5545.105520
- Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol. 2022;19(11):717-726. doi: 10.1038/s41575-022-00634-6
- Mikocka-Walus A, Pittet V, Rossel J, et al. Symptoms of depression and anxiety are independently associated with clinical recurrence of inflammatory bowel disease. Clin Gastroenterol Hepatol. 2016;14(6):829-835.e1. doi: 10.1016/j.cgh.2015.12.045
- Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterol Res Pract. 2014;2014:872725. doi: 10.1155/2014/872725
- Khorsand B, Aghdaei HA, Nazemalhosseini-Mojarad E, Nadalian B, Nadalian B, Houri H. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn’s disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Front Cell Infect Microbiol. 2022;12:1015890. doi: 10.3389/fcimb.2022.1015890
- Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin Nutr. 2018;38(2):522-528. doi: 10.1016/j.clnu.2018.04.010
- Messaoudi M, Violle N, Bisson J, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256-261. doi: 10.4161/gmic.2.4.16108
- Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2014;232(10):1793-1801. doi: 10.1007/s00213-014-3810-0
- Freijy TM, Cribb L, Oliver G, et al. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The “Gut Feelings” randomised controlled trial. Front Neurosci. 2023;16:1097278. doi: 10.3389/fnins.2022.1097278
- Jacka FN, O’Neil A, Opie R, et al. A randomised controlled trial of dietary improvement for adults with major depression (the “SMILES” trial). BMC Med. 2017;15(1):23. doi: 10.1186/s12916-017-0791-y
- Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the Anti-Seizure effects of the ketogenic diet. Cell. 2018;173(7):1728-1741.e13. doi: 10.1016/j.cell.2018.04.027
- Sun Y, Ju P, Xue T, Ali U, Cui D, Chen J. Alteration of faecal microbiota balance related to long-term deep meditation. Gen Psychiatry. 2023b;36(1):e100893. doi: 10.1136/gpsych-2022-100893
- Lackner JM, Jaccard J, Keefer L, et al. Improvement in gastrointestinal symptoms after cognitive behavior therapy for refractory irritable bowel syndrome. Gastroenterology. 2018;155(1):47-57. doi: 10.1053/j.gastro.2018.03.063
- Halkjær SI, Christensen AH, Lo BZS, et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: Results from a randomised, double-blind placebo-controlled study. Gut. 2018;67(12):2107-2115. doi: 10.1136/gutjnl-2018-316434
- Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021; 53(2):156-165. doi: 10.1038/s41588-020-00763-1
- Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants (Basel). 2021;10(2):201. doi: 10.3390/antiox10020201
- Hills RD Jr., Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: Profound implications for diet and disease. Kompass Nutr Diet. 2022;2(1):3-18. doi: 10.3390/nu11071613
- Alli SR, Gorbovskaya I, Liu JC, Kolla NJ, Brown L, Müller DJ. The gut microbiome in depression and potential benefit of prebiotics, probiotics and synbiotics: A systematic review of clinical trials and observational studies. Int J Mol Sci. 2022;23(9):4494. doi: 10.3390/ijms23094494
- Alemu BK, Wu L, Azeze GG, Lau SL, Wang Y, Wang CC. Microbiota-targeted interventions and clinical implications for maternal-offspring health: An umbrella review of systematic reviews and meta-analyses of randomised controlled trials. J Glob Health. 2024;14:04177. doi: 10.7189/jogh.14.04177
- Short MI, Hudson R, Besasie BD, et al. Comparison of rectal swab, glove tip, and participant-collected stool techniques for gut microbiome sampling. BMC Microbiol. 2021;21:26. doi: 10.1186/s12866-020-02080-3
- Hanssen NM, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab. 2021;33(6):1098-1110. doi: 10.1016/j.cmet.2021.05.005
- Edwards JD, Love SJ, Phillips RP, et al. Long-and short-term soil storage methods other than freezing can be useful for DNA-based microbial community analysis. Soil Biol Biochem. 2024;191:109329. doi: 10.1016/j.soilbio.2024.109329
- Weinroth MD, Belk AD, Dean C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. J Anim Sci. 2022;100(2):skab346. doi: 10.1093/jas/skab346
- Wensel CR, Pluznick JL, Salzberg SL, Sears CL. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. J Clin Investig. 2022;132(7):e154944. doi: 10.1172/JCI154944.
- Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes. 2024;16(1):2323237. doi: 10.1080/19490976.2024.2323237
- Venkataraman R, Madempudi RS, Neelamraju J, et al. Effect of multi-strain probiotic formulation on students facing examination stress: A double-blind, placebo-controlled study. Probiotics Antimicrob Proteins. 2021;13(1):12-18. doi: 10.1007/s12602-020-09681-4
- Zhang C, Wang L, Liu X, et al. The different ways multi-strain probiotics with different ratios of Bifidobacterium and Lactobacillus relieve constipation induced by loperamide in mice. Nutrients. 2023;15(19):4230. doi: 10.3390/nu15194230.
- Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: From motility to mood. Gastroenterology. 2021;160(5):1486-1501. doi: 10.1053/j.gastro.2020.10.066
- Hertli S, Zimmermann P. Molecular interactions between the intestinal microbiota and the host. Mol Microbiol. 2022;117(6):1297-1307. doi: 10.1111/mmi.14905
- Vinelli V, Biscotti P, Martini D, et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients. 2022;14(13):2559. doi: 10.3390/nu14132559
- Solanki R, Karande A, Ranganathan P. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Front Neurol. 2023;14:1149618. doi: 10.3389/fneur.2023.1149618
- Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The microbiota-gut-brain axis in psychiatric disorders. Int J Mol Sci. 2022;23(19):11245. doi: 10.3390/ijms231911245
- Singh TP, Natraj BH. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit Rev Microbiol. 2021;47(4):479-498. doi: 10.1080/1040841X.2021.1902940
- Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational biology and machine learning approaches to understand mechanistic microbiome-host interactions. Front Microbiol. 2021;12:618856. doi: 10.3389/fmicb.2021.618856
- Qin Y, Havulinna AS, Liu Y, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54(2):134-142. doi: 10.1038/s41588-021-00991-z
- Zhou Z, Tran PQ, Breister AM, et al. METABOLIC: High-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome. 2022;10(1):33. doi: 10.1186/s40168-021-01213-8.
- Sharma M, Wasan A, Sharma RK. Recent developments in probiotics: An emphasis on Bifidobacterium. Food Biosci. 2021;41:100993. doi: 10.1016/j.fbio.2021.100993
- Nikolova VL, Smith MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry. 2021;78(12):1343. doi: 10.1001/jamapsychiatry.2021.2573
- Fukui H, Nishida A, Matsuda S, et al. Usefulness of machine learning-based gut microbiome analysis for identifying patients with irritable bowels syndrome. J Clin Med. 2020;9(8):2403. doi: 10.3390/jcm9082403
- Kolobaric A, Andreescu C, Jašarević E, et al. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry. 2024;29(10):3064-3075. doi: 10.1038/s41380-024-02551-3
- Elgellaie A, Thomas SJ, Kaelle J, Bartschi J, Larkin T. Pro‐inflammatory cytokines IL‐1α, IL‐6 and TNF‐α in major depressive disorder: Sex‐specific associations with psychological symptoms. Eur J Neurosci. 2023;57(11):1913-1928. doi: 10.1111/ejn.15992
- Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The gut microbial bile acid modulation and its relevance to digestive health and diseases. Gastroenterology. 2023;164(7):1069-1085. doi: 10.1053/j.gastro.2023.02.022
- Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and utility of the antioxidant potential of probiotic Lactobacilli and bifidobacteria as representatives of the human gut microbiota. Biomedicines. 2021;9(10):1340. doi: 10.3390/biomedicines9101340
- Rábago-Monzón ÁR, Rodríguez-Rosas AM, Baldenebro- Félix DL, et al. Influence of the intestinal microbiome associated with the development of neurodegenerative diseases: Literature review. Rev Med UAS. 2024;14(2):171-181. doi: 10.28960/revmeduas.2007-8013.v14.n2.008
- He X, Zhao S, Li Y. Faecalibacterium prausnitzii: A Next‐generation probiotic in gut disease improvement. Can J Infect Dis Med Microbiol. 2021;2021(1):6666114. doi: 10.1155/2021/6666114
- Cheng Y, Liu J, Ling Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr. 2022;62(28):7929-7959. doi: 10.1080/10408398.2021.1920884
- Yoo S, Jung SC, Kwak K, Kim JS. The role of prebiotics in modulating gut microbiota: Implications for human health. Int J Mol Sci. 2024;25(9):4834. doi: 10.3390/ijms25094834
- Chunduri A, Reddy SD, Jahanavi M, Reddy CN. Gut-brain axis, neurodegeneration and mental health: A personalized medicine perspective. Indian J Microbiol. 2022;62(4):505-515. doi: 10.1007/s12088-022-01033-w
- Simon MC, Sina C, Ferrario PG, Daniel H, Working Group “Personalized Nutrition” of the German Nutrition Society. Gut microbiome analysis for personalized nutrition: The state of science. Mol Nutr Food Res. 2023;67(1):2200476. doi: 10.1002/mnfr.202200476
- Dicks LM. Gut bacteria and neurotransmitters. Microorganisms. 2022;10(9):1838. doi: 10.3390/microorganisms10091838
- Barrea L, Muscogiuri G, Frias-Toral E, et al. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr. 2021;61(18):3066-3090. doi: 10.1080/10408398.2020.1792826
- Rawat K, Singh N, Kumari P, Saha L. A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Rev Neurosci. 2021;32(2):143-157. doi: 10.1515/revneuro-2020-0078
- Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes. 2025;17(1):2455503. doi: 10.1080/19490976.2025.2455503
- Shukla V, Singh S, Verma S, Verma S, Rizvi AA, Abbas M. Targeting the microbiome to improve human health with the approach of personalized medicine: Latest aspects and current updates. Clin Nutr ESPEN. 2024;63:813-820. doi: 10.1016/j.clnesp.2024.08.005
- Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: Mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 2021;18(1):67-80. doi: 10.1038/s41575-020-0350-4
- Effendi RM, Anshory M, Kalim H, et al. Akkermansia muciniphila and Faecalibacterium prausnitzii in immune-related diseases. Microorganisms. 2022;10(12):2382. doi: 10.3390/microorganisms10122382
- Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625-637. doi: 10.1038/s41575-022-00631-9