Biocompatibility of nanomaterials in medical applications

Biocompatibility is a critical factor in the application of nanomaterials in medical fields, as these materials must interact safely and effectively with biological systems to be viable for therapeutic and diagnostic use. This article investigates this feature, focusing on the interactions of nanomaterials with cells, tissues, and the immune system. Key properties such as surface chemistry, size, shape, and material composition are examined for their influence on the biological response. The article also explores the role of nanomaterials in medical applications, including drug delivery, diagnostic imaging, and tissue engineering, while discussing the challenges involved in enhancing their biocompatibility. A case study on the calcium oxide (CaO)–calcium phosphate (CaP) binary system is presented, showcasing its potential in bone tissue engineering, particularly its osteoinductive properties and ability to mimic the bone mineral content. The analysis underscores both its therapeutic potential and the biocompatibility concerns of CaO–CaP scaffolds. The article concludes by outlining strategies to optimize nanomaterial biocompatibility and future directions for their translation into medical applications.
- Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. San Diego, CA: Elsevier Academic Press; 2004. p. 162-4.
- Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules. 2021;26(4):1077. doi: 10.3390/molecules26041077
- Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev. 2011;14(8):593-632. doi: 10.1080/10937404.2011.627078
- Barenholz YC. Doxil®-the first FDA-approved nano-drug: From an idea to a product. In: Sarmento B, Das Neves J, editors. Handbook of Harnessing Biomaterials in Nanomedicine. Singapore: Jenny Stanford Publishing; 2021. p. 463-528. doi: 10.1201/9781003139462-18
- Nguyen KL, Yoshida T, Kathuria-Prakash N, et al. Multicenter safety and practice for off-label diagnostic use of ferumoxytol in MRI. Radiology. 2019;293(3):554-564. doi: 10.1148/radiol.2019190315
- Ramos AP, Cruz MA, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev. 2017;9(2):79-89. doi: 10.1007/s12551-017-0266-0
- Damiri F, Fatimi A, Musuc AM, et al. Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. J Drug Deliv Sci Technol. 2024;18:105601. doi: 10.1016/j.jddst.2024.105601
- Kandhola G, Park S, Lim JW, et al. Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Eng Regen Med. 2023;20(3):411-433. doi: 10.1007/s13770-023-00450-w
- Fu PP. Introduction to the special issue: Nanomaterials-toxicology and medical applications. J Food Drug Anal. 2014;22(1):1. doi: 10.1016/j.jfda.2013.12.002
- Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193
- Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7:587012. doi: 10.3389/fmolb.2020.587012
- Ma N, Ma C, Li C, et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol. 2013;13(10):6485-6498. doi: 10.1166/jnn.2013.7721
- Ridolfo R, Tavakoli S, Junnuthula V, Williams DS, Urtti A, Van Hest JC. Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium. Biomacromolecules. 2021;22(1):126-133. doi: 10.1021/acs.biomac.0c01237
- Kümmerer K, Menz J, Schubert T, Thielemans W. Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere. 2011;82(10):1387-1392. doi: 10.1016/j.chemosphere.2010.11.064
- Jiao M, Zhang P, Meng J, et al. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci. 2018;6(4):726-745. doi: 10.1039/c7bm00974b
- Aljabali AA, Obeid MA, Bashatwah RM, et al. Nanomaterials and their impact on the immune system. Int J Mol Sci. 2023;24(3):2008. doi: 10.3390/ijms24032008
- Fadeel B. Hide and seek: Nanomaterial interactions with the immune system. Front Immunol. 2019;10:133. doi: 10.3389/fimmu.2019.00133
- Umut E. Surface modification of nanoparticles used in biomedical applications. In: Tüken T, editor. Modern Surface Engineering Treatments. Ch. 8. London: IntechOpen; 2013. doi: 10.5772/55646
- Xin GL, Zhang C, Ni JL, Li YK, Sun Y, He XX. Nanomaterial applications in prevention and treatment strategies of virus: A review. Bioconjug Chem. 2025;36(7):1341-1361. doi: 10.1021/acs.bioconjchem.5c00170
- Siller IG, Enders A, Steinwedel T, et al. Real-time live-cell imaging technology enables high-throughput screening to verify in vitro biocompatibility of 3D printed materials. Materials (Basel). 2019;12(13):2125. doi: 10.3390/ma12132125
- Wang D, Cui L, Chang X, Guan D. Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation, osteogenic differentiation and mineralization in human osteoblast-like MG-63 Cells. J Photochem Photobiol B. 2020;202:111652. doi: 10.1016/j.jphotobiol.2019.111652
- Greish K, Thiagarajan G, Ghandehari H. In vivo methods of nanotoxicology. In: McCall MJ, editor. Nanotoxicity: Methods and Protocols. Vol. 926. New York: Humana Press; 2012. p. 235-253. doi: 10.1007/978-1-62703-002-1_17
- Kyriakides TR, Raj A, Tseng TH, et al. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater. 2021;16(4):042005. doi: 10.1088/1748-605x/ac14a2
- Saini B, Srivastava S. Nanotoxicity prediction using computational modelling-review and future directions. IOP Conf Ser Mater Sci Eng. 2018;348:012005. doi: 10.1088/1757-899X/348/1/012005
- Cao J, Pan Y, Jiang Y, et al. Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles via nano- QSAR. Green Chem. 2020;22(11):3512-3521. doi: 10.1039/d0gc00772c
- Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem. 2018;6:360. doi: 10.3389/fchem.2018.00360
- Barenholz YC. Doxil®-the first FDA-approved nano- drug: From an idea to a product. In: Sarmento B, Das Neves J, editors. Handbook of Harnessing Biomaterials in Nanomedicine. Singapore: Jenny Stanford Publishing; 2021. p. 463-528. doi: 10.1201/9781003139462-18
- Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering triplet-triplet annihilation upconversion: From materials to real-world applications. ACS Nano. 2023;17(4):3259-3288. doi: 10.1021/acsnano.2c12552
- Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. doi: 10.1016/j.addr.2021.05.004
- Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. Nanoscale Adv. 2022;4(17):3479-3494. doi: 10.1039/d2na00298d
- Hussain Z, Khan S, Imran M, et al. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res. 2019;9:721-734. doi: 10.1007/s13346-019-00634-3
- Debayle M, Balloul E, Dembele F, et al. Zwitterionic polymer ligands: An ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials. 2019;219:119357. doi: 10.1016/j.biomaterials.2019.119357
- Chen YC, Shi W, Shi JJ, Lu JJ. Progress of CD47 immune checkpoint blockade agents in anticancer therapy: A hematotoxic perspective. J Cancer Res Clin Oncol. 2022;148(10):2987-3000. doi: 10.1007/s00432-022-04018-w
- Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res. 2023;13(3):716-737. doi: 10.1007/s13346-022-01250-1
- Zhao W, Lin F, Adebowale B, Chen Y, Li Z. Multifaceted applications of nanomaterials in colorectal cancer management: Screening, diagnostics, and therapeutics. Int J Nanomedicine. 2025;20:7271-7294. doi: 10.2147/ijn.s520616
- Mucalo MR. Novel advances and approaches in biomedical materials based on calcium phosphates. Materials (Basel). 2019;12(3):405. doi: 10.3390/ma12030405
- Wu C, Ramaswamy Y, Zreiqat H. Effects of calcium ions on bone regeneration and biomaterial design. J Bone Res. 2021;9(1):22-30. doi: 10.35248/2572-4916.21.9.249
- Qi L, Zhao T, Yan J, et al. Advances in magnesium-containing bioceramics for bone repair. Biomater Transl. 2024;5(1): 3-20. doi: 10.1097/bt.0000000000000081
- Shasha Z, Chuanchuan H, Yawen Z. The progress and prospect of calcium peroxide nanoparticles in antibacterial activity. Colloid Interface Sci Commun. 2024;61:100793. doi: 10.1016/j.colcom.2023.100793
- Yu H, Sun J, She K, et al. Sprayed PAA-CaO₂ nanoparticles combined with calcium ions and reactive oxygen species for antibacterial and wound healing. Regen Biomater. 2023;10:rbad071. doi: 10.1093/rb/rbad071
- Levingstone TJ, Herbaj S, Dunne NJ. Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials (Basel). 2019;9(11):1570. doi: 10.3390/nano9111570
- Liu H, Yazici H, Ergun C, Webster TJ, Bermek H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008;4(5):1472-1479. doi: 10.1016/j.actbio.2008.02.025
- Hou X, Zhang L, Zhou Z, et al. Calcium phosphate-based biomaterials for bone repair. J Funct Biomater. 2022;13(4):187. doi: 10.3390/jfb13040187
- Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):4. doi: 10.1186/s40824-018-0149-3
- Fattah-Alhosseini A, Chaharmahali R, Rajabi A, Babaei K, Kaseem M. Performance of PEO/polymer coatings on the biodegradability, antibacterial effect and biocompatibility of Mg-based materials. J Funct Biomater. 2022;13(4):267. doi: 10.3390/jfb13040267
- Xie C. Bio-inspired nanofunctionalisation of biomaterial surfaces: A review. Biosurf Biotribol. 2019;5(3):83-92. doi: 10.1049/bsbt.2019.0009
- Ranjbarnejad F, Khazaei M, Shahryari A, et al. Recent advances in gene therapy for bone tissue engineering. J Tissue Eng Regen Med. 2022;16(12):1121-1137. doi: 10.1002/term.3363
- Sun J, Chen C, Zhang B, Yao C, Zhang Y. Advances in 3D-printed scaffold technologies for bone defect repair: Materials, biomechanics, and clinical prospects. BioMed Eng Online. 2025;24:51. doi: 10.1186/s12938-025-01381-w 49.
- Tao Z, Yuan Z, Zhou D, et al. Fabrication of magnesium doped porous polylactic acid microsphere for bone regeneration. Biomater Transl. 2023;4(4):280–290. doi:10.12336/biomatertransl.2023.04.007
- Jain KK. Nanomedicine: Technologies and Applications. Berlin: Springer; 2012.
- Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M. Nanomedicine in cancer therapy: Innovative trends and prospects. Cancer Sci. 2011;102(7):1247-1252. doi: 10.1111/j.1349-7006.2011.01941.x
- Hassan SADH, Almaliki MNS, Hussein ZA, et al. Development of nanotechnology by artificial intelligence: A comprehensive review. J Nanostruct. 2023;13(4):915-932. doi: 10.22052/JNS.2023.04.002
- Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0
- Rasmussen K, Rauscher H, Kearns P, González M, Sintes JR. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul Toxicol Pharmacol. 2019;104:74-83. doi: 10.1016/j.yrtph.2019.02.008
- Germain M, Caputo F, Metcalfe S, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164-171. doi: 10.1016/j.jconrel.2020.07.007
- Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P. Review of achievements of the OECD working party on manufactured nanomaterials’ testing and assessment programme: From exploratory testing to test guidelines. Regul Toxicol Pharmacol. 2016;74:147-160. doi: 10.1016/j.yrtph.2015.11.004