Tyrosine kinases: Structural insights and mechanistic roles in cancer progression and therapeutics

Protein tyrosine kinases (PTKs) are key enzymes of cellular signaling, regulating key processes such as proliferation, differentiation, migration, metabolism, and apoptosis. Tyrosine kinases (TKs) modulate protein functions in normal and disease states by phosphorylation of tyrosine residues on target proteins. In this critical role, dysregulation of TKs is directly linked with disease progression, particularly in cancer, therefore making TKs an attractive target for therapeutic intervention. The PTK family is broadly classified into receptor TKs (RTKs) and non-receptor TKs (NRTKs), having variation at both structural and functional levels. RTKs are membrane-bound kinases that initiate intracellular signaling when they react with extracellular ligands, whereas NRTKs within the cytoplasm or nucleus convey intracellular signaling upon receptor activation. This paper aims to review the organization, mechanistic activity, and therapeutic potential of PTKs, with a particular focus on epidermal growth factor receptor and proto-oncogene tyrosine-protein kinase (Src) as representatives of RTK and NRTK, respectively. In addition, this review also focuses on addressing emerging strategies to enhance tyrosine kinase inhibitor efficacy and overcome acquired resistance in cancer therapy.
- Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355-365. doi: 10.1038/35077225
- Hunter T. Signaling--2000 and beyond. Cell. 2000; 100(1):113-127. doi: 10.1016/s0092-8674(00)81688-8
- Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211-225. doi: 10.1016/s0092-8674(00)00114-8
- Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of energy metabolism by receptor tyrosine kinase ligands. Front Physiol. 2020;11:354. doi: 10.3389/fphys.2020.00354
- Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell. 2023;186(18):3945-3967.e26. doi: 10.1016/j.cell.2023.07.013
- Yoshida K, Yokoi A, Yamamoto T, et al. Aberrant activation of cell-cycle-related kinases and the potential therapeutic impact of PLK1 or CHEK1 Inhibition in uterine leiomyosarcoma. Clin Cancer Res. 2022;28(10):2147-2159. doi: 10.1158/1078-0432.Ccr-22-0100
- Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol. 2023;13:1240115. doi: 10.3389/fonc.2023.1240115
- Wilks AF. Structure and function of the protein tyrosine kinases. Prog Growth Factor Res. 1990;2(2):97-111. doi: 10.1016/0955-2235(90)90026-G
- Aschner Y, Downey GP. The importance of tyrosine phosphorylation control of cellular signaling pathways in respiratory disease: pY and pY Not. Am J Respir Cell Mol Biol. 2018;59(5):535-547. doi: 10.1165/rcmb.2018-0049TR
- Yao Z, Stagljar I. Multiple functions of protein phosphatases in receptor tyrosine kinase signaling revealed by interactome analysis. Mol Cell Oncol. 2017;4(3):e1297101. doi: 10.1080/23723556.2017.1297101
- Solouki S, August A, Huang W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol Ther. 2019;201:39-50. doi: 10.1016/j.pharmthera.2019.05.008
- Tomuleasa C, Tigu A-B, Munteanu R, et al. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther. 2024;9(1):201. doi: 10.1038/s41392-024-01899-w
- Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021;6(1):218. doi: 10.1038/s41392-021-00641-0
- Hunter T, Cooper JA. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897-930. doi: 10.1146/annurev.bi.54.070185.004341
- Sawyers CL. Rational therapeutic intervention in cancer: Kinases as drug targets. Curr Opin Genet Dev. 2002;12(1):111-115. doi: 10.1016/s0959-437x(01)00273-8
- Zhang N, Li Y. Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. MedComm (2020). 2023;4(6):e446. doi: 10.1002/mco2.446
- Nair S, Bonner JA, Bredel M. EGFR mutations in head and neck squamous cell carcinoma. Int J Mol Sci. 2022;23(7):3818. doi: 10.3390/ijms23073818
- Vigneri PG, Tirrò E, Pennisi MS, et al. The insulin/IGF system in colorectal cancer development and resistance to therapy. Front Oncol. 2015;5:230. doi: 10.3389/fonc.2015.00230
- Chen PH, Chen X, He X. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochim Biophys Acta. 2013;1834(10):2176-2186. doi: 10.1016/j.bbapap.2012.10.015
- Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R expression in the tumor microenvironment. Biomedicines. 2024;12(10):2381.
- Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8(1):198. doi: 10.1038/s41392-023-01460-1
- Farooq M, Khan AW, Kim MS, Choi S. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells. 2021;10(11):3242. doi: 10.3390/cells10113242
- Berger H, Wodarz A, Borchers A. PTK7 Faces the Wnt in development and disease. Front Cell Dev Biol. 2017;5:31. doi: 10.3389/fcell.2017.00031
- Ji J, Qian Q, Cheng W, et al. FOXP4-mediated induction of PTK7 activates the Wnt/β-catenin pathway and promotes ovarian cancer development. Cell Death Dis. 2024;15(5):332. doi: 10.1038/s41419-024-06713-7
- Hechtman JF. NTRK insights: Best practices for pathologists. Modern Pathol. 2022;35(3):298-305. doi: 10.1038/s41379-021-00913-8
- Belliveau DJ, Krivko I, Kohn J, et al. NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J Cell Biol. 1997;136(2):375-388. doi: 10.1083/jcb.136.2.375
- Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ ROR pathway in cancer: From signaling to therapeutic intervention. Cells. 2021;10(1):142. doi: 10.3390/cells10010142
- Song P, Gao Z, Bao Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 2024;17(1):46. doi: 10.1186/s13045-024-01563-4
- Cao M, Koneczny I, Vincent A. Myasthenia gravis with antibodies against muscle specific kinase: An update on clinical features, pathophysiology and treatment. Front Mol Neurosci. 2020;13:159. doi: 10.3389/fnmol.2020.00159
- Raj S, Kesari KK, Kumar A, et al. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol Cancer. 2022;21(1):31. doi: 10.1186/s12943-022-01503-1
- Tsou WI, Nguyen KQ, Calarese DA, et al. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J Biol Chem. 2014;289(37):25750-25763. doi: 10.1074/jbc.M114.569020
- Vázquez-Bellón N, Martínez-Bosch N, García de Frutos P, Navarro P. Hallmarks of pancreatic cancer: Spotlight on TAM receptors. eBioMedicine. 2024;107:105278. doi: 10.1016/j.ebiom.2024.105278
- Leppänen VM, Saharinen P, Alitalo K. Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization. Proc Natl Acad Sci U S A. 2017;114(17):4376-4381. doi: 10.1073/pnas.1616166114
- Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: From catalytic to non-catalytic functions. Oncogene. 2019;38(39):6567-6584. doi: 10.1038/s41388-019-0931-2
- Mahato AK, Sidorova YA. RET receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer. Int J Mol Sci. 2020;21(19):7108. doi: 10.3390/ijms21197108
- Shi F, Mendrola JM, Sheetz JB, et al. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Rep. 2021;37(3):109834. doi: 10.1016/j.celrep.2021.109834
- Chen L, Kong X, Fang Y, et al. Recent advances in the role of discoidin domain receptor tyrosine kinase 1 and discoidin domain receptor tyrosine kinase 2 in breast and ovarian cancer. Front Cell Dev Biol. 2021;9:747314. doi: 10.3389/fcell.2021.747314
- Shenoy GP, Pal R, Purwarga Matada GS, Singh E, Raghavendra NM, Dhiwar PS. Discoidin domain receptor inhibitors as anticancer agents: A systematic review on recent development of DDRs inhibitors, their resistance and structure activity relationship. Bioorg Chem. 2023;130:106215. doi: 10.1016/j.bioorg.2022.106215
- Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol. 2021;11(9):210218. doi: 10.1098/rsob.210218
- Huang H. Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase: A catalytic receptor with many faces. Int J Mol Sci. 2018;19(11):3448. doi: 10.3390/ijms19113448
- Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol. 2016;27:iii4-iii15. doi: 10.1093/annonc/mdw301
- Siveen KS, Prabhu KS, Achkar IW, et al. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol Cancer. 2018;17(1):31. doi: 10.1186/s12943-018-0788-y
- Hubbard SR, Miller WT. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117-123. doi: 10.1016/j.ceb.2007.02.010
- Kan Y, Paung Y, Seeliger MA, Miller WT. Domain architecture of the nonreceptor tyrosine kinase Ack1. Cells. 2023;12(6):900. doi: 10.3390/cells12060900
- Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J Biol Chem. 2010;285(14):10605-10615. doi: 10.1074/jbc.M109.060459
- Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: Molecular signaling and evolving role in cancers. Oncogene. 2015;34(32):4162-4167. doi: 10.1038/onc.2014.350
- Ahmed S, Miller WT. The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem. 2022;298(12):102664. doi: 10.1016/j.jbc.2022.102664
- Sawant M, Wilson A, Sridaran D, et al. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene. 2023;42(29):2263-2277. doi: 10.1038/s41388-023-02747-x
- Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci U S A. 2014;111(22):8025-8030. doi: 10.1073/pnas.1401180111
- Caveney NA, Saxton RA, Waghray D, et al. Structural basis of Janus kinase trans-activation. Cell Rep. 2023;42(3):112201. doi: 10.1016/j.celrep.2023.112201
- Lv Y, Qi J, Babon JJ, et al. The JAK-STAT pathway: From structural biology to cytokine engineering. Signal Transduct Target Ther. 2024;9(1):221. doi: 10.1038/s41392-024-01934-w
- Hellwig S, Miduturu CV, Kanda S, et al. Small-molecule inhibitors of the c-Fes protein-tyrosine kinase. Chem Biol. 2012;19(4):529-540. doi: 10.1016/j.chembiol.2012.01.020
- Ivanova IA, Arulanantham S, Barr K, et al. Targeting FER kinase inhibits melanoma growth and metastasis. Cancers (Basel). 2019;11(3):419. doi: 10.3390/cancers11030419
- Menegon A, Burgaya F, Baudot P, Dunlap DD, Girault JA, Valtorta F. FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: Similarities and differences in the expression pattern. Eur J Neurosci. 1999;11(11):3777-3788. doi: 10.1046/j.1460-9568.1999.00798.x
- Rigiracciolo DC, Cirillo F, Talia M, et al. Focal adhesion kinase fine tunes multifaced signals toward breast cancer progression. Cancers (Basel). 2021;13(4):645. doi: 10.3390/cancers13040645
- Yin Z, Zou Y, Wang D, et al. Regulation of the Tec family of non-receptor tyrosine kinases in cardiovascular disease. Cell Death Discov. 2022;8(1):119. doi: 10.1038/s41420-022-00927-4
- Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CI. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J. 2011;278(12):2001-2010. doi: 10.1111/j.1742-4658.2011.08134.x
- Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal. 2021;19(1):67. doi: 10.1186/s12964-021-00750-x
- Kovács M, Németh T, Jakus Z, et al. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. J Exp Med. 2014;211(10):1993-2011. doi: 10.1084/jem.20132496
- Pelaz SG, Tabernero A. Src: Coordinating metabolism in cancer. Oncogene. 2022;41(45):4917-4928. doi: 10.1038/s41388-022-02487-4
- Goel RK, Kim N, Lukong KE. Seeking a better understanding of the non-receptor tyrosine kinase, SRMS. Heliyon. 2023;9(6):e16421. doi: 10.1016/j.heliyon.2023.e16421
- Fhu CW, Ali A. Protein lipidation by palmitoylation and myristoylation in cancer. Front Cell Dev Biol. 2021;9:673647. doi: 10.3389/fcell.2021.673647
- Kinoshita-Kikuta E, Utsumi T, Miyazaki A, et al. Protein-N-myristoylation-dependent phosphorylation of serine 13 of tyrosine kinase Lyn by casein kinase 1γ at the Golgi during intracellular protein traffic. Sci Rep. 2020;10(1):16273. doi: 10.1038/s41598-020-73248-0
- Berclaz G, Altermatt HJ, Rohrbach V, Dreher E, Ziemiecki A, Andres AC. Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis. Int J Cancer. 2000;85(6):889-894. doi: 10.1002/(sici)1097-0215(20000315)85:6<889:aid-ijc25>3.0.co;2-4
- Gu JJ, Ryu JR, Pendergast AM. Abl tyrosine kinases in T-cell signaling. Immunol Rev. 2009;228(1):170-183. doi: 10.1111/j.1600-065X.2008.00751.x
- Colicelli J. ABL tyrosine kinases: Evolution of function, regulation, and specificity. Sci Signal. 2010;3(139):re6. doi: 10.1126/scisignal.3139re6
- Ganguly SS, Plattner R. Activation of abl family kinases in solid tumors. Genes Cancer. 2012;3(5-6):414-425. doi: 10.1177/1947601912458586
- Hobbs HT, Shah NH, Badroos JM, Gee CL, Marqusee S, Kuriyan J. Differences in the dynamics of the tandem-SH2 modules of the Syk and ZAP-70 tyrosine kinases. Protein Sci. 2021;30(12):2373-2384. doi: 10.1002/pro.4199
- Qu C, Zheng D, Li S, et al. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology. 2018;68(3):1125-1139. doi: 10.1002/hep.29881
- Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. 2020;61:167-179. doi: 10.1016/j.semcancer.2019.09.015
- Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci. 2006;63(5):601-615. doi: 10.1007/s00018-005-5426-3
- Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097-1105. doi: 10.1177/1947601911423031
- Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-747. doi: 10.1038/s41571-018-0113-0
- Melillo RM, Santoro M. The RET receptor family. In: Wheeler DL, Yarden Y, editors. Receptor Tyrosine Kinases: Family and Subfamilies. Berlin: Springer International Publishing; 2015. p. 559-591.
- Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol. 2014;6(2):a009175. doi: 10.1101/cshperspect.a009175
- Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39-87. doi: 10.1016/b978-0-12-800180-6.00002-5
- Toy KA, Valiathan RR, Núñez F, et al. Tyrosine kinase discoidin domain receptors DDR1 and DDR2 are coordinately deregulated in triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(1):9-18. doi: 10.1007/s10549-015-3285-7
- Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30. doi: 10.1186/s12943-018-0776-2
- Bencze J, Szarka M, Bencs V, et al. Neuropathological characterization of Lemur tyrosine kinase 2 (LMTK2) in Alzheimer’s disease and neocortical Lewy body disease. Sci Rep. 2019;9(1):17222. doi: 10.1038/s41598-019-53638-9
- Hu L, Chen HY, Cai J, et al. Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer. BMC Cancer. 2015;15:246. doi: 10.1186/s12885-015-1285-y
- Rajpurohit YS, Sharma DK, Misra HS. Involvement of serine/ threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol. 2022;173(1):103883. doi: 10.1016/j.resmic.2021.103883
- Seok SH. Structural insights into protein regulation by phosphorylation and substrate recognition of protein kinases/phosphatases. Life (Basel). 2021;11(9):957. doi: 10.3390/life11090957
- Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253. doi: 10.1186/gb-2004-5-12-253
- Ivanova IA, Vermeulen JF, Ercan C, et al. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene. 2013;32(50):5582-5592. doi: 10.1038/onc.2013.277
- Golubovskaya VM. Targeting FAK in human cancer: From finding to first clinical trials. Front Biosci (Landmark Ed). 2014;19(4):687-706. doi: 10.2741/4236
- Yoon H, Dehart JP, Murphy JM, Lim ST. Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114-128. doi: 10.1369/0022155414561498
- Ganguly SS, Fiore LS, Sims JT, et al. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. Oncogene. 2012;31(14):1804-1816. doi: 10.1038/onc.2011.361
- Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: From leukaemia to solid tumours. Nat Rev Cancer. 2013;13(8):559-571. doi: 10.1038/nrc3563
- Engen JR, Wales TE, Hochrein JM, et al. Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci. 2008;65(19):3058-3073. doi: 10.1007/s00018-008-8122-2
- Hubbard SR. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol. 1999;71(3):343-358. doi: 10.1016/S0079-6107(98)00047-9
- Lawrence MC, Ward CW. Structural features of the receptor tyrosine kinase ectodomains. In: Wheeler DL, Yarden Y, editors. Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Berlin: Springer New York; 2015. p. 163-193.
- Süveges D, Jura N. Structural features of the kinase domain. In: Wheeler DL, Yarden Y, editors. Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Berlin: Springer New York; 2015. p. 195-223.
- Eshaq AM, Flanagan TW, Hassan SY, et al. Non-receptor tyrosine kinases: Their structure and mechanistic role in tumor progression and resistance. Cancers (Basel). 2024;16(15):2754. doi: 10.3390/cancers16152754
- Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287(2-3):121-149. doi: 10.1016/0304-419x(96)00003-0
- Abram CL, Courtneidge SA. Src family tyrosine kinases and growth factor signaling. Exp Cell Res. 2000;254(1):1-13. doi: 10.1006/excr.1999.4732
- Knighton DR, Zheng JH, Ten Eyck LF, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991;253(5018):407-414. doi: 10.1126/science.1862342
- Roskoski R Jr. Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 2004; 324(4):1155-1164. doi: 10.1016/j.bbrc.2004.09.171
- Okada M, Nakagawa H. A protein tyrosine kinase involved in regulation of pp60c-src function. J Biol Chem. 1989;264(35):20886-20893.
- Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J. 2000;19(5):964-978. doi: 10.1093/emboj/19.5.964
- EswarKumar N, Yang CH, Tewary S, et al. An integrative approach unveils a distal encounter site for rPTPε and phospho-Src complex formation. Structure. 2023;31(12):1567-1577.e5. doi: 10.1016/j.str.2023.09.004
- Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28 Suppl 1(Suppl 1):S24-S31. doi: 10.1038/onc.2009.198
- Bazley LA, Gullick WJ. The epidermal growth factor receptor family. Endocr Relat Cancer. 2005;12 Suppl 1:S17-S27. doi: 10.1677/erc.1.01032
- Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol. 2008;26(10):1742-1751. doi: 10.1200/jco.2007.12.1178
- Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PM, Ferguson KM. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure. 2013;21(7):1214-1224. doi: 10.1016/j.str.2013.05.008
- Ferguson KM. Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys. 2008;37:353-373. doi: 10.1146/annurev.biophys.37.032807.125829
- Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277(48):46265-46272. doi: 10.1074/jbc.M207135200
- Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: Effect of dimerization, dynamics, and mutation. Review. Front Oncol. 2023;13:1258371. doi: 10.3389/fonc.2023.1258371
- Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti- Domingues LC, Gervasio FL. Structure and dynamics of the EGF receptor as revealed by experiments and simulations and its relevance to non-small cell lung cancer. Cells. 2019;8(4):316. doi: 10.3390/cells8040316
- Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006;118(2):257-262. doi: 10.1002/ijc.21496
- Tatematsu A, Shimizu J, Murakami Y, et al. Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res. 2008;14(19):6092-6096. doi: 10.1158/1078-0432.Ccr-08-0332
- Doss GP, Rajith B, Chakraborty C, NagaSundaram N, Ali SK, Zhu H. Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors. Sci Rep. 2014;4:5868. doi: 10.1038/srep05868
- Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20. doi: 10.1002/1878-0261.12155
- Tan X, Lambert PF, Rapraeger AC, Anderson RA. Stress-induced EGFR trafficking: Mechanisms, functions, and therapeutic implications. Trends Cell Biol. 2016;26(5):352-366. doi: 10.1016/j.tcb.2015.12.006
- Jutten B, Keulers TG, Schaaf MB, et al. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol. 2013;108(3):479-483. doi: 10.1016/j.radonc.2013.06.033
- Casanova ML, Larcher F, Casanova B, et al. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res. 2002;62(12):3402-3407.
- Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A. 1992;89(10):4309-4313. doi: 10.1073/pnas.89.10.4309
- Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A. 1992;89(7):2965-2969. doi: 10.1073/pnas.89.7.2965
- Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A. 1990;87(21):8602-8606. doi: 10.1073/pnas.87.21.8602
- Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene. 2004;23(48):7947-7956. doi: 10.1038/sj.onc.1208161
- Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22(4):337-358. doi: 10.1023/a:1023772912750
- Silva CM. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene. 2004;23(48):8017-8023. doi: 10.1038/sj.onc.1208159
- Dong YL, Vadla GP, Lu JJ, et al. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Commun Biol. 2021;4(1):374. doi: 10.1038/s42003-021-01898-5
- Delgado L, Monteiro L, Silva P, et al. BUBR1 as a prognostic biomarker in canine oral squamous cell carcinoma. Animals (Basel). 2022;12(22):3082. doi: 10.3390/ani12223082
- Tokumitsu Y, Nakano S, Ueno H, Niho Y. Suppression of malignant growth potentials of v-Src-transformed human gallbladder epithelial cells by adenovirus-mediated dominant negative H-Ras. J Cell Physiol. 2000;183(2):221-227. doi: 10.1002/(sici)1097-4652(200005)183:2<221:Aid-jcp8>3.0.Co;2-l
- Jaber Chehayeb R, Stiegler AL, Boggon TJ. Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLoS One. 2020;14(12):e0226113. doi: 10.1371/journal.pone.0226113
- Biscardi JS, Tice DA, Parsons SJ. c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res. 1999;76:61-119. doi: 10.1016/s0065-230x(08)60774-5
- Ingley E. Src family kinases: Regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta. 2008;1784(1):56-65. doi: 10.1016/j.bbapap.2007.08.012
- Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. Precis Clin Med. 2022;5(4):pbac024. doi: 10.1093/pcmedi/pbac024
- Broekman F, Giovannetti E, Peters GJ. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J Clin Oncol. 2011;2(2):80-93. doi: 10.5306/wjco.v2.i2.80
- Agrawal M, Garg RJ, Cortes J, Quintás-Cardama A. Tyrosine kinase inhibitors: The first decade. Curr Hematol Malig Rep. 2010;5(2):70-80. doi: 10.1007/s11899-010-0045-y
- Yang JC, Shih JY, Su WC, et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): A phase 2 trial. Lancet Oncol. 2012;13(5):539-548. doi: 10.1016/s1470-2045(12)70086-4
- Sequist LV, Besse B, Lynch TJ, et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(18):3076-3083. doi: 10.1200/jco.2009.27.9414
- Pietanza MC, Lynch TJ Jr., Lara PN Jr., et al. XL647--a multitargeted tyrosine kinase inhibitor: Results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib. J Thorac Oncol. 2012;7(1):219-226. doi: 10.1097/JTO.0b013e31822eebf9
- Miller VA, Hirsh V, Cadranel J, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol. 2012;13(5):528-538. doi: 10.1016/s1470-2045(12)70087-6
- Katakami N, Atagi S, Goto K, et al. LUX-Lung 4: A phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol. 2013;31(27):3335-3341. doi: 10.1200/jco.2012.45.0981
- Reckamp KL, Giaccone G, Camidge DR, et al. A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan- HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer. 2014;120(8):1145-1154. doi: 10.1002/cncr.28561
- Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915-928. doi: 10.1038/nrc2536
- Camidge DR, Bazhenova L, Salgia R, et al. First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: Updated results. J Clin Oncol. 2013;31(15_suppl):8031. doi: 10.1200/jco.2013.31.15_suppl.8031
- Sequist LV, Soria JC, Gadgeel SM, et al. First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol. 2014;32(15_suppl):8010. doi: 10.1200/jco.2014.32.15_suppl.8010
- Jiang T, Zhou C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer. Transl Lung Cancer Res. 2014;3(6):370-372. doi: 10.3978/j.issn.2218-6751.2014.08.02
- Kim D-W, Lee DH, Kang JH, et al. Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). J Clin Oncol. 2014;32(15_ suppl):8011. doi: 10.1200/jco.2014.32.15_suppl.8011
- Janjigian YY, Azzoli CG, Krug LM, et al. Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clin Cancer Res. 2011;17(8):2521-2527. doi: 10.1158/1078-0432.Ccr-10-2662
- Janjigian YY, Smit EF, Groen HJ, et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov. 2014;4(9):1036-1045. doi: 10.1158/2159-8290.Cd-14-0326
- Goldberg SB, Oxnard GR, Digumarthy S, et al. Chemotherapy with Erlotinib or chemotherapy alone in advanced non-small cell lung cancer with acquired resistance to EGFR tyrosine kinase inhibitors. Oncologist. 2013;18(11):1214-1220. doi: 10.1634/theoncologist.2013-0168
- Kelly MP, Nikolaev VO, Gobejishvili L, et al. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev. 2025;77(3):100042. doi: 10.1016/j.pharmr.2025.100042
- Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res. 2024;200:107059. doi: 10.1016/j.phrs.2024.107059
- Fauvel B, Yasri A. Antibodies directed against receptor tyrosine kinases: Current and future strategies to fight cancer. MAbs. 2014;6(4):838-851. doi: 10.4161/mabs.29089
- Slichenmyer WJ, Fry DW. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin Oncol. 2001;28(5 Suppl 16):67-79. doi: 10.1016/s0093-7754(01)90284-2
- Ciardiello F, Tortora G. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin Cancer Res. 2001;7(10):2958-2970.
- Pointreau Y, Azzopardi N, Ternant D, Calais G, Paintaud G. Cetuximab pharmacokinetics influences overall survival in patients with head and neck cancer. Ther Drug Monit. 2016;38(5):567-572. doi: 10.1097/ftd.0000000000000321
- Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: Randomized phase II study of cetuximab in combinationwith carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30(21):2615-2623. doi: 10.1200/jco.2010.34.5579
- Nabholtz JM, Abrial C, Mouret-Reynier MA, et al. Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: Identification of biologically defined signatures predicting treatment impact. Ann Oncol. 2014;25(8):1570-1577. doi: 10.1093/annonc/mdu183
- Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti- EGFR antibody with tyrosine kinase inhibitor. Cancer Res. 2004;64(15):5355-5362. doi: 10.1158/0008-5472.Can-04-0562
- Ferraro DA, Gaborit N, Maron R, et al. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR. Proc Natl Acad Sci U S A. 2013;110(5):1815-1820. doi: 10.1073/pnas.1220763110
- Garrett JT, Arteaga CL. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther. 2011;11(9):793-800. doi: 10.4161/cbt.11.9.15045
- Sankarapandian V, Rajendran RL, Miruka CO, et al. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract. 2024;263:155607. doi: 10.1016/j.prp.2024.155607
- Nagampalli RS, Vadla GP, Nadendla EK. Emerging strategies to overcome chemoresistance: Structural insights and therapeutic targeting of multidrug resistance-linked ATP-binding cassette transporters. Int J Transl Med. 2025;5(1):6. doi: 10.3390/ijtm5010006
- Pamphlett R, Bishop DP. Elemental biomapping of human tissues suggests toxic metals such as mercury play a role in the pathogenesis of cancer. Front Oncol. 2024;14:1420451. doi: 10.3389/fonc.2024.1420451
- Lim SM, Syn NL, Cho BC, Soo RA. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 2018;65:1-10. doi: 10.1016/j.ctrv.2018.02.006
- Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41-50. doi: 10.1056/NEJMoa1913662
- Wang Z, Yang JJ, Huang J, et al. Lung adenocarcinoma harboring EGFR T790M and in Trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J Thorac Oncol. 2017;12(11):1723-1727. doi: 10.1016/j.jtho.2017.06.017
- Okura N, Nishioka N, Yamada T, et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res. 2020;26(9):2244-2256. doi: 10.1158/1078-0432.Ccr-19-2321
- Choudhury NJ, Marra A, Sui JSY, et al. Molecular biomarkers of disease outcomes and mechanisms of acquired resistance to first-line osimertinib in advanced EGFR-mutant lung cancers. J Thorac Oncol. 2023;18(4):463-475. doi: 10.1016/j.jtho.2022.11.022
- Meng Y, Bai R, Cui J. Precision targeted therapy for EGFR mutation-positive NSCLC: Dilemmas and coping strategies. Thorac Cancer. 2023;14(13):1121-1134. doi: 10.1111/1759-7714.14858
- Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell. 2010;18(2):160-170. doi: 10.1016/j.ccr.2010.06.014
- Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: Understanding resistance to HER2- targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269-280. doi: 10.1038/ncponc0509
- Tseng PH, Wang YC, Weng SC, et al. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol. 2006;70(5):1534-1541. doi: 10.1124/mol.106.023911
- Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744-4749.
- Scaltriti M, Rojo F, Ocaña A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628-638. doi: 10.1093/jnci/djk134
- Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733-2743. doi: 10.1056/NEJMoa064320
- Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408-1417. doi: 10.1056/NEJMoa0805019
- Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337-345. doi: 10.1056/NEJMoa033025
- Van Emburgh BO, Sartore-Bianchi A, Di Nicolantonio F, Siena S, Bardelli A. Acquired resistance to EGFR-targeted therapies in colorectal cancer. Mol Oncol. 2014;8(6):1084-1094. doi: 10.1016/j.molonc.2014.05.003
- Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757-1765. doi: 10.1056/NEJMoa0804385
- Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 2007;67(6):2643-2648. doi: 10.1158/0008-5472.Can-06-4158
- Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626-1634. doi: 10.1200/jco.2007.14.7116
- De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 2010;11(8):753-762. doi: 10.1016/s1470-2045(10)70130-3
- Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851-1857. doi: 10.1158/0008-5472.Can-08-2466
- Baselga J, Cameron D, Miles D, et al. Objective response rate in a phase II multicenter trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in combination with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with T. J Clin Oncol. 2007;25(18_suppl):1004. doi: 10.1200/jco.2007.25.18_suppl.1004
- Baselga J, Swain SM. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463-475. doi: 10.1038/nrc2656
- Xiao T, Ali S, Mata D, Lohmann AE, Blanchette PS. Antibody-drug conjugates in breast cancer: Ascent to destiny and beyond-a 2023 review. Curr Oncol. 2023;30(7):6447-6461. doi: 10.3390/curroncol30070474
- Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment. Biomark Res. 2021;9(1):38. doi: 10.1186/s40364-021-00294-9
- Desmonts G, Daffos F, Forestier F, Capella-Pavlovsky M, Thulliez P, Chartier M. Prenatal diagnosis of congenital toxoplasmosis. Lancet. 1985;1(8427):500-504. doi: 10.1016/s0140-6736(85)92096-3
- Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2):331-345. doi: 10.1007/s10549-012-2289-9
- Viale G, Rotmensz N, Maisonneuve P, et al. Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: Prognostic implications of EGFR immunoreactivity. Breast Cancer Res Treat. 2009;116(2):317-328. doi: 10.1007/s10549-008-0206-z
- Finn RS. Targeting Src in breast cancer. Ann Oncol. 2008;19(8):1379-1386. doi: 10.1093/annonc/mdn291
- Zheng R, Gagan JR, Botten GA, et al. Genomic landscape of mixed phenotype acute leukemia associated with immunophenotypic lineage predominance: Impact on diagnosis and treatment. Eur J Haematol. 2025;114:1041-1051. doi: 10.1111/ejh.14414
- Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19(49):5636-5642. doi: 10.1038/sj.onc.1203912
- Zhang J, Kalyankrishna S, Wislez M, et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol. 2007;170(1):366-376. doi: 10.2353/ajpath.2007.060706
- Ishizawar RC, Miyake T, Parsons SJ. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene. 2007;26(24):3503-3510. doi: 10.1038/sj.onc.1210138
- Tryfonopoulos D, Walsh S, Collins DM, et al. Src: A potential target for the treatment of triple-negative breast cancer. Ann Oncol. 2011;22(10):2234-2240. doi: 10.1093/annonc/mdq757
- Finn RS, Dering J, Ginther C, et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat. 2007;105(3):319-326. doi: 10.1007/s10549-006-9463-x
- Canonici A, Browne AL, Ibrahim MFK, et al. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther Adv Med Oncol. 2020;12:1758835919897546. doi: 10.1177/1758835919897546
- Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR inhibition in molecular cancer therapy: What else can we improve? Cancers (Basel). 2020;12(6):1489. doi: 10.3390/cancers12061489
- Yoshida T, Zhang G, Smith MA, et al. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res. 2014;20(15):4059-4074. doi: 10.1158/1078-0432.Ccr-13-1559
- Zhou Y, Yao Z, Lin Y, Zhang H. From tyrosine kinases to tyrosine phosphatases: New therapeutic targets in cancers and beyond. Pharmaceutics. 2024;16(7):888. doi: 10.3390/pharmaceutics16070888