AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025320139
RESEARCH ARTICLE

A rational power function-based approach for solving rational fractional differential equations

Babak Shiri1* Aml Shloof2 Norazak Senu3 Dumitru Baleanu4
Show Less
1 Key Laboratory of Numerical Simulation of Sichuan Provincial Universities, College of Mathematics and Information Sciences, Neijiang Normal University, China
2 Department of Mathematics, Faculty of Science, University of Zintan, Libya
3 Institute for Mathematical Research, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
4 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
IJOCTA 2026, 16(1), 370–382; https://doi.org/10.36922/IJOCTA025320139
Received: 4 August 2025 | Revised: 10 October 2025 | Accepted: 15 October 2025 | Published online: 26 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

A highly efficient and accurate numerical method for systems of fractional differential equations (FDEs) with rational order is presented in this paper. Rational power functions and rational Taylor series projection are utilized to obtain approximate solutions. Rational semi-smooth spaces are introduced, and the regularity of solutions in these spaces is established. A series of theoretical results, such as the existence and uniqueness of solutions, properties of the rational Taylor series and its remainder term, and an operational matrix approach, are derived. It is proven that the numerical solution is exact when the exact solution is a rational power series, and the approximate solution is shown to be the rational Taylor series projection of the exact solution. The convergence of the method is analyzed. The efficiency of the proposed method is demonstrated through numerical experiments, which show significant improvements in computational time compared to existing methods.

Keywords
Caputo derivative
Fractional differential equations
Rational power functions
Operational matrix
Rational Taylor series
Rational semi-smooth spaces
Funding
This research is supported by the Neijiang Normal University school-level science and technology project (key project, No. XJ2024008301).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Nigmatullin R,  Baleanu  D,  Fernandez  Balance  equations  with  generalised memory  and  the  emerging fractional kernels. Nonlinear Dyn., 2021;104:4149-4161. https://doi.org/10.1007/s11071-021-06562-5

 

  1. Mainardi F. Fractional relaxation-oscillation and fractional diffusion wave phenomena. Chaos Solitons Fractals. 1996;7(9):1461–1477. https://doi.org/10.1016/0960-0779(95)00125-5

 

  1. Shiri B, Baleanu D. All linear fractional derivatives with  power  functions’  convolution  kernel  and  interpolation  Chaos  Solitons  Fractals. 2023;170:113399. https://doi.org/10.1016/j.chaos.2023.113399

 

  1. Oldham K, Spanier J. The fractional calculus theory and Applications of Differentiation and Integration to Arbitrary Order. New York. Academic Press; 1974.

 

  1. Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York. Wiley; 1993. https://doi.org/10.1007/978-981-99-6080-4

 

  1. G´omez-Aguilar JF,  L´opez-L´opez MG, Alvarado-Mart´ınez VM, Baleanu D, Khan H. Chaos in a cancer model via fractional derivatives  with  exponential  decay  and Mittag-Leffler law. 2017;19(12):681. https://doi.org/10.3390/e19120681

 

  1. Shang   Vulnerability  of networks: fractional   percolation   on random graphs.  Phys  Rev  E. 2014;89(1):012813. https://doi.org/10.1103/PhysRevE.89.012813

 

  1. C¸ erdik TS¸. Analysis of a system of nonlinear hadamard type fractional boundary value problems. Fundam J Math Appl. 2022;5(2):114-26. https://dx.doi.org/10.33401/fujma.1035387

 

  1. Mpungu K,   Nass      On complete  group  classification  of  time fractional   systems   evolution differential equation  with  a  constant  delay. Fun- dam  J  Math  Appl. 2023;6(1):12-23. https://doi.org/10.33401/fujma.1147657

 

  1. Ayalew M. Numerical solution of time fractional Klein-gordon equation in framework of the Yang-Abdel-Cattani fractional derivative operator. Adv Anal Appl Math. 2024;1(2):126-39. https://doi.org/10.62298/advmath.12

 

  1. Kumar   On  a  generalized  Mittag- Leffler  function  and  fractional integrals. Fundam  J  Math  Appl. 2024;7(1):12-25. https://doi.org/10.33401/fujma.1378534

 

  1. Yasin F,  Afzal  Z,  Saleem  MS, Jahangir N,  Shang    Hermite–Hadamard type inequality  for  non-convex  functions employing   the   Caputo–Fabrizio fractional integral.  Res.  Math. 2024;11(1):2366164. https://doi.org/10.1080/27684830.2024.2366164

 

  1. Shukla A, Sukavanam N. Interior approximate controllability of second-order semilinear control systems. Int J Control. 2024;97(3):615-24. https://doi.org/10.1080/00207179.2022.2161013

 

  1. Dineshkumar C, Udhayakumar R, Vijayakumar V, et al. A note on existence and approximate controllability outcomes of Atangana–Baleanu neutral fractional stochastic hemivariational inequality. Results  2022;38:105647. https://doi.org/10.1016/j.rinp.2022.105647

 

  1. Shukla A, Sukavanam N, Pandey D. Controllability of  semilinear  stochastic system with multiple delays in control. IFAC Proceedings  Volumes 2013;47(1):306-312. https://doi.org/10.3182/20140313-3-IN-3024.00107

 

  1. Pedas A,  Tamme    Numerical solution of  nonlinear  fractional  differential equations  by  spline  collocation  methods. J Comput  Appl  Math. 2014;255:216-230. https://doi.org/10.1016/j.cam.2013.04.049

 

  1. Kolk M, Pedas A, Tamme E. Modified spline collocation for linear fractional differential equations. J Comput Appl Math. 2015;283:28-40. https://doi.org/10.1016/j.cam.2015.01.021

 

  1. Shiri B, Baleanu D. System of fractional differential algebraic equations with applications. Chaos Solitons Fractals. 2019;120:203-212. https://doi.org/10.1016/j.chaos.2019.01.028

 

  1. Brunner   Collocation  methods for Volterra  integral  and  related functional differential  equations.  Vol.  15. Cam- bridge. Cambridge University Press; 2004.  https://doi.org/10.1017/CBO9780511543234

 

  1. Zaky   An  accurate  spectral collocation method for nonlinear systems of fractional  differential  equations  and related integral  equations  with  nonsmooth solutions.  Appl  Num  Math. 2020;154:205-222. https://doi.org/10.1016/j.apnum.2020.04.002

 

  1. Zaky MA. Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non–smooth solutions. J Comput Appl Math. 2019;357:103-122. https://doi.org/10.1016/j.cam.2019.01.046

 

  1. Alijani Z,  Baleanu  D,  Shiri  B,  Wu  Spline  collocation  methods  for systems of  fuzzy  fractional  differential equations. Chaos  Solit  Fractals. 2020;131:109510. https://doi.org/10.1016/j.chaos.2019.109510

 

  1. Shiri B,  Wu  GC,  Baleanu  Collocation  methods  for  terminal  value problems of  tempered  fractional  differential equations.  Appl  Num  Math. 2020;156:385-395. https://doi.org/10.1016/j.apnum.2020.05.007

 

  1. Kharazmi E, Zayernouri M, Karniadakis GE. Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci Comput. 2017;39(3):A1003-A1037. https://doi.org/10.1137/16M1073121

 

  1. Zayernouri M,  Karniadakis  Fractional   Sturm–Liouville   eigen-problems: theory   and   numerical   approximation. J   Comput   Phys.   2013;252:495-517. https://doi.org/10.1016/j.jcp.2013.06.031

 

  1. Zayernouri M,  Ainsworth  M, Karniadakis GE.  A  unified  Petrov–Galerkin spectral  method  for  fractional  Comput Method Appl Mech Eng. 2015;283:1545-1569.  https://doi.org/10.1016/j.cma.2014.10.051

 

  1. Zayernouri M,  Karniadakis  Fractional spectral collocation methods for linear  and  nonlinear  variable  order FPDEs. J  Comput  Phys.  2015;293, 312-338. https://doi.org/10.1016/j.jcp.2014.12.001

 

  1. Zhang Z, Zeng F, Karniadakis GE. Optimal error estimates of spectral Petrov–Galerkin and collocation methods  for  initial value problems of fractional differential equations. SIAM J Numer Anal. 2015;53(4):2074-2096. https://doi.org/10.1137/140988218

 

  1. Zeng F, Mao Z, Karniadakis GE. A generalized spectral  collocation  method with tunable  accuracy  for  fractional differential  equations  with  end-point singularities. SIAM J Sci Comput. 2017;39(1):A360-A383. https://doi.org/10.1137/16M1076083

 

  1. Huang C,  Jiao  Y,  Wang  LL,  Zhang Z. Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions. SIAM J Numer Anal. 2016;54(6):3357- https://doi.org/10.1137/16M1059278

 

  1. Chihara   An  Introduction  to  Orthogonal  Polynomials.  Dover  ed. Mineola,  New  York.  Dover  Publications; 2011 https://doi.org/10.4236/ad.2014.22003

 

  1. Stahl H,   Totik      General Orthogonal    Polynomials. Cambridge. Cambridge   University   Press; 1992. https://doi.org/10.1017/CBO9780511759420

 

  1. Shiri B,  Shi  YG,  Baleanu  Ulam- Hyers  stability  of  incommensurate sys- tems for weakly singular integral equations. J  Comput  Appl  Math. 2025;474:116920.  https://doi.org/10.1016/j.cam.2025.116920

 

  1. Shiri B, Shi YG, Baleanu D. The well-posedness of incommensurate FDEs in the space of continuous functions. 2024;16(8):1058. https://www.mdpi.com/2073-8994/16/8/1058

 

  1. Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV. Mittag–Leffler functions, related topics and appli Berlin, Springer; 2020.

 

  1. Baleanu D, Shiri B, Srivastava HM, Al Qurashi MA. Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Adv Differ Equ. 2018;2018(1):1-23. https://doi.org/10.1186/s13662-018-1822-5
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing