AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025280123
RESEARCH ARTICLE

Consensus control of fractional-order singular MAS via adaptive pinning under switching topologies

Ammar Alsinai1* Azmat Ullah Khan Niazi2 Maryam Iqbal2 Aseel Smerat3
Show Less
1 Department of Computer Science, College of Engineering and Information Technology, Onaizah Colleges, Qassim, Saudi Arabia
2 Department of Mathematics and Statistics, The University of Lahore, Sargodha, Punjab, Pakistan
3 Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
Received: 12 July 2025 | Revised: 9 November 2025 | Accepted: 14 November 2025 | Published online: 16 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Fractional-order multi-agent systems with singular dynamics and time-varying network structures have gained increasing attention due to their ability to model complex interconnected processes with memory effects and algebraic constraints. In this paper, a novel adaptive pinning control framework for fractional-order singular multi-agent systems under switching topologies is proposed to achieve leader-following consensus. The proposed method simultaneously handles memory-dependent fractional dynamics, algebraic constraints from system singularity, and changing network connectivity, thereby addressing important limitations of traditional methods. By using a distributed adaptive protocol that only needs a small percentage of agents to be pinned, the technique dramatically lowers control complexity without sacrificing performance. Numerical simulations showed the framework’s practical superiority over currently existing methods in terms of convergence rate and robustness, while analytical results based on fractional Lyapunov theory established rigorous stability conditions that account for system uncertainties. Through an integrated approach to managing entangled fractional, singular, and network dynamic characteristics, these contributions enhance the control of intricate multi-agent systems. The proposed framework explicitly handles switching topologies through average dwell-time conditions and jointly connected graphs, providing rigorous stability guarantees under dynamic network changes.

Keywords
Fractional-order
Fractional-order multi-agent systems
Consensus control
Lyapunov stability and adaptive pinning strategies
Distributed multi-agent systems
Funding
The authors express their sincere gratitude and appreciation to [Onaizah Colleges, Saudi Arabia] for providing APC funding for this research.
Conflict of interest
The authors declare that they have no competing interests, or other interests that might be perceived to influence the results and/or discussion reported in this paper.
References
  1. Hu W, Wen G, Rahmani A, Yu Y. Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader. Nonlinear Dyn. 2019;97:1087- 1105. https://doi.org/10.1007/s11071-019-05034-1

 

  1. Bai J, Wen G, Rahmani A. Leaderless consensus for the fractional-order nonlinear multi-agent systems under directed interaction topology. Int J Syst Sci. 2018;49(5):954-963.

 

  1. Yaghoubi Z, Talebi HA. Cluster consensus and cluster formation for nonlinear fractional-order multi-agent systems. Int J Dyn. 2024;12(2):586- 599.

 

  1. Yan Z, Yang B, Luo M, Hu M. Finite-Time Partial Component  Consensus  for Nonlinear  Leader-Following  Multi-Agent Systems. Mathematics.  2024;(2227-7390): 12(22). https://doi.org/10.3390/math12223552

 

  1. Yan X,  Li  K,  Yang  C,  Zhuang  J,  Cao J.  Consensus  of  fractional-order multi- agent  systems  via  observer-based boundary control. IEEE Trans Network Sci Eng. https://doi.org/10.1109/TNSE.2024.3371058

 

  1. Pan H, Yu X, Guo L. Admissible leader- following consensus of fractional-order singular multiagent system via observer-based protocol. IEEE Transactions on Circuits and Systems II: Express Briefs. 2018;66(8):1406-1410. https://doi.org/10.1109/TCSII.2018.2878619

 

  1. Yu Z,  Jiang  H,  Hu  C,  Yu  Leader- following consensus of fractional-order multi- agent  systems  via  adaptive  pinning  control.  Int  J  Control. 2015;88(9):1746-1756. https://doi.org/10.1080/00207179.2015.1015807

 

  1. An C,  Su  H,  Chen    Leader-following exponential  consensus  for  higher-order fractional-order  mass  with  mismatched disturbances  and  event-triggered  input.  IEEE Transactions  on Systems,  Man,  and Cybernetics:   Systems. 2023;53(10):6448-6459. https://doi.org/10.1109/TSMC.2023.3282267

 

  1. Gong P, Lan W. Adaptive robust tracking control for  uncertain  nonlinear  fractional- order  multi-agent  systems  with  directed topologies.      2018;92:92-99.  https://doi.org/10.1016/j.automatica.2018.02.010

 

  1. Pan H, Liu Z, Na C. Finite-time output leader- following consensus of fractional-order linear multi-agent systems. In 2019 Chinese Control Conference (CCC). 2019; pp. 958-963. IEEE. https://doi.org/10.23919/ChiCC.2019.8865987

 

  1. Bai J, Wen G, Rahmani A, Yu Y. Distributed consensus tracking for the fractional-order multi- agent systems based on the sliding mode control method. 2017;235:210-216. https://doi.org/10.1016/j.neucom.2016.12.066

 

  1. Jin Y, Xu Y, Liu G, Jin Z, Li H. Event- triggered distributed  sliding  mode control  of  fractional-order  nonlinear multi- agent    Symmetry. 2023;15(6):1247. https://doi.org/10.3390/sym15061247

 

  1. Li B, Xu B, Zhang D. Leader-Following Group Consensus of Fractional-Order Multiagent Systems via a Dynamic Event-Triggered Control Strategy. IEEE Transactions on Control of Net- work Systems. 2023;11(3):1275-1286.

 

  1. Chen Y, Wen G, Peng Z, Huang T, Yu Y. Necessary and sufficient conditions for group consensus of fractional multiagent systems un- der fixed and switching topologies via pinning control. IEEE Trans Cybern. 2019;51(1):28-39. https://doi.org/10.1109/tcyb.2019.2918549

 

  1. Zhang X, Zheng S, Ahn CK, Xie Y. Adaptive neural consensus for fractional-order multi- agent systems with faults and delays. IEEE Trans Neural  Netw. 2022;34(10):7873-7886. https://doi.org/10.1109/tnnls.2022.3146889

 

  1. Amirkhani A, Barshooi AH. Consensus in multi- agent systems: a review. Artificial Intelligence 2022;55(5):3897-3935.

 

  1. Luo L, Mi W, Zhong S. Adaptive consensus control  of  fractional  multi-agent systems  by  distributed  event-triggered strategy.  Nonlinear  2020;100(2):1327-1341. https://doi.org/10.1007/s11071-020-05586-7

 

  1. Kandasamy J, Ramachandran R, Veerasamy V, Irudayaraj AXR. Distributed leader-follower based adaptive consensus control for networked microgrids. Appl Energy. 2024;353:122083. https://doi.org/10.1016/j.apenergy.2023.122083

 

  1. Pu X, Cheng Z. Couple-group consensus of heterogeneous fractional multi-agent systems with pinning and self-adaptive controller. In 2022 34th Chinese Control and Decision Conference (CCDC). IEEE. 2022; 3357-3362. https://doi.org/10.1109/CCDC55256.2022.10034347

 

  1. Yang J, Luo W, Yi H, Xu W. Adaptive consensus control of nonlinear fractional-order multi-agent systems with a leader. In 2019, 3rd International Symposium on Autonomous Systems (ISAS). IEEE. 2019; 528-533.  https://doi.org/10.1109/ISASS.2019.8757753

 

  1. Almeida R, Girejko E, Hristova S, Malinowska AB. Leader-following consensus for fractional multi-agent systems. Adv Differ Equ. 2019;1-15.

 

  1. Shahamatkhah, ,  Tabatabaei,  M. (2018). Leader-following  consensus  of discrete- time   fractional-order   multi-agent systems.  Chinese  Physics  B,  27(1), 010701.  https://doi.org/10.1088/1674-1056/27/1/010701

 

  1. Gong P, Wang K, Lan W. Fully distributed robust consensus control of multi-agent systems with heterogeneous unknown fractional-order dynamics. Int J Syst Sci 2019;50(10):1902-1919. https://doi.org/10.1080/00207721.2019.1645913

 

  1. Lv S, Pan M, Li X, Cai W, Lan T, Li B. Consensus control of fractional-order multi-agent systems with time delays via fractional-order iterative learning control. 2019; IEEE Access: 7, 159731-159742.

 

  1. Zhang Y, Wen G, Rahmani A, Peng Z, Wen S. Observer-Based Intra-Cluster Lag Consensus of Multi-Agent Systems via Intermittent Adaptive Pinning Control. J Syst Sci Complex. 2023;36(5):1809-1829.

 

  1. Li Z, Gao L, Chen W, Xu Y. Distributed adaptive cooperative  tracking  of uncertain nonlinear fractional-order multi-agent systems. IEEE/CAA J Autom Sin. 2019;7(1):292-300. https://doi.org/10.1109/JAS.2019.1911858

 

  1. Liu Y, Xie X, Chadli M, Sun J. Leaderless consensus control of fractional-order non- linear multi-agent systems with measurement sensitivity and actuator attacks. IEEE Trans- actions on Control of Network Systems. 2024; https://doi.org/10.1109/TCNS.2024.3395721

 

  1. Xiao P, Gu Z. Adaptive event-triggered consensus of fractional-order nonlinear multi-agent systems. 2021; IEEE Access: 10, 213-220. https://doi.org/10.1109/ACCESS.2021.3136892

 

  1. Ye  Y,  Su    Leader-following consensus  of  nonlinear  fractional-order multi- agent  systems  over  directed networks. Nonlinear   Dynamics. 2019;96:1391-1403. https://doi.org/10.1007/s11071-019-04861-6

 

  1. Wu J, Yu Y, Ren G. Leader-following formation  control  for  discrete-time fractional stochastic  multi-agent  systems  by  event- triggered strategy. Fractal fract. 2024;8(5):246. https://doi.org/10.3390/fractalfract8050246

 

  1. Zhang Y, Wen G, Peng Z, Yu Y, Rahmani A. Group multiple lags consensus of fractional-order   nonlinear leader-following multi-agent  systems  via  adaptive control. T  I  Meas  Control. 2019;41(5):1313-1322. https://ui.adsabs.harvard.edu/linkgateway/ 2019..41.1313Z/doi : 10.1177/0142331218777570

 

  1. Hu T, He Z, Zhang X, Zhong S. Leader- following consensus of fractional-order multi- agent  systems  based  on event-triggered control.  Nonlinear  2020;99:2219-2232. https://doi.org/10.3934/math.2025707

 

  1. Xu Y, Zhang Z, Xie X, Palhares RM, Li W,  Wu    Consensus  of Fractional-order fuzzy  Multi-agent  systems:  exploring im- pulsive  security  protocols.  IEEE Transactions on Control of Network Systems. 2025; https://doi.org/10.1109/TCNS.2025.3543754

 

  1. Wang Z, Xue D, Pan F. Event-triggered formation adaptive control of singular fractional order multi-agent systems with switching topologies and nonlinear dynamics. Non- linear Dynamics. 2025; 113(9), 10143-10156. https://doi.org/10.1007/s11071-024-10782-w

 

  1. Yan X, Li K, Yang C, Zhuang J, Cao J. Consensus of fractional-order multi-agent systems via observer-based boundary control. IEEE Transactions on Network Science and Engineering. 2024; https://doi.org/10.1109/TNSE.2024.3371058

 

  1. Chen L, Liu C, Lopes AM, Zhang Z, Chen Y. Non-fragile consensus strategy for variable Fractional-order  Multi-agent systems based on disturbance observer. IEEE Trans- actions on Control of Network Systems. 2025; https://doi.org/10.1109/TCNS.2025.3527254

 

  1. Ma YK, Raja MM, Shukla A, Vijayakumar V, Nisar KS, Thilagavathi K. New results on approximate controllability of fractional delay integrodifferential systems of order 1¡ r¡ 2 with Sobolev-type. Alex Eng J. 2023;81:501-518. https://doi.org/10.1016/j.aej.2023.09.043

 

  1. Mohan Raja M, Vijayakumar V, Tsai CW, Veluvolu KC. Optimal control strategies and continuous dependence for stochastic hilfer fractional systems with delay: a Volterra-fredholm Integro- differential approach. Optim Control Appl. 2025; https://doi.org/10.1002/oca.70024

 

  1. Alhazmi M, Aljohani AF, Taha NE, Abdel- Khalek S, Bayram M, Saber S. Application of a fractal fractional operator to nonlinear glucose–insulin systems: adomian decomposition solutions. Comput Biol Med. 2025;196:110453. https://doi.org/10.1016/j.compbiomed.2025.110453

 

  1. Alawaideh YM,  Al-khamiseh  BM, Ra’ed SH,  Abbas  S,  Ghannam  H,  Alayed T, Popa    Fractional-order  analysis  of non- linear  oscillations  in  a Time-dependent mass  pendulum.  Phys  Open. 2025;100338. https://doi.org/10.1016/j.physo.2025.100338

 

  1. Pang D, Zhu HJ, Jinde Cao HM, Liu S. Data- driven optimal bipartite containment control for heterogeneous multi-agent systems over coopetition networks. J Frankl Inst. 2025;362(16):108057. https://doi.org/10.1016/j.jfranklin.2025.108057

 

  1. Pang D, Wu X, Li C, Wang Z. Modeling and analysis of measles epidemic model with memory effect. Int J Control. 2025;13:314. https://doi.org/10.1007/s40435-025-01824-1

 

  1. Denghao Pang, Hao Meng, Jinde Cao, Song Liu. Group consensus protocol with input delay for HMASs in cooperative-competitive networks. Neurocomputing.  2024;596:127931.  https://doi.org/10.1016/j.neucom.2024.127931

 

  1. Meng H, Pang D, Cao J, et. al. Optimal bi- partite consensus control for heterogeneous un- known multi-agent systems via reinforcement learning. Appl Math Comput 2024;476:128785. https://doi.org/10.1016/j.amc.2024.128785

 

  1. Pang D, Liu S, Zhao X-W. Containment control analysis of delayed nonlinear fractional-order multi-agent systems. Math Methods Appl Sci. 2024;10354. https://doi.org/10.1002/mma.10354
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing