AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025100043
RESEARCH ARTICLE

Borzdyko’s uniqueness theorems for fractal-fractional ordinary differential equations with power-law kernels and hysteresis

Abdon Atangana1,2* Sonal Jain3
Show Less
1 Institute for Groundwater Studies (IGS) Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
2 Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
3 Faculty of Data Science and Analytics, Sir Padampat Singhania University, Udaipur, Rajasthan, India
Received: 4 March 2025 | Revised: 5 November 2025 | Accepted: 9 December 2025 | Published online: 19 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Fractal–fractional differential equations have emerged as a powerful mathematical framework for modeling complex systems exhibiting memory effects, nonlocality, and hysteresis phenomena. This study investigates a class of fractal-fractional ordinary differential equations characterized by a power-law memory kernel and influenced by hysteresis behavior. The continuity of the function g(t,w(t)) over closed subsets of R, is used to establish the foundational results. A supporting lemma is introduced to facilitate the development of a uniqueness theorem. Drawing upon Borzdyko’s framework, we derive existence results pertinent to the targeted family of equations.

Keywords
Power law
Fractal-fractional operators
Uniqueness
Borzdyko’s conditions
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Chen W, Sun H, Zhang X, Koroˇsak D. Anomalous diffusion  modeling  by fractal  and  fractional  Comput  Math  Appl. 2010;59(5):1754–1758. https://doi.org/10.1016/j.camwa.2009.08.019

 

  1. Chen   Time–space  fabric underlying  anomalous  diffusion.  Chaos Soli- tons   Fractals. 2006;28(4):923–929. https://doi.org/10.1016/j.chaos.2005.08.199

 

  1. Sun HG, Meerschaert MM, Zhang Y, Zhu J, Chen    A  fractal  Richards’ equation to capture the non-Boltzmann scaling of  water  transport  in  unsaturated  me- dia.  Adv  Water  Resour. 2013;52:292–295. https://doi.org/10.1016/j.advwatres.2012.11.005

 

  1. Atangana A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex systems. Chaos Solitons Fractals. 2017;102:396– https://doi.org/10.1016/j.chaos.2017.04.027

 

  1. Atangana A, Jain S. A new numerical ap- proximation of the fractal ordinary differential equation. Eur Phys J Plus. 2018;133:37. https://doi.org/10.1140/epjp/i2018-11895-1

 

  1. Jain S, El-Khatib Y. Modelling chaotic dynamical attractors with fractal-fractional differential operators. AIMS Math. 2021;6(12):13689–13725. https://doi: 10.3934/math.2021795

 

  1. Jain S. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam–Bashforth method. Eur Phys J Plus. 2018;133(1):19. https://doi.org/10.1140/EPJP/I2018-11854-X

 

  1. Agarwal RP, Lakshmikantham V. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. Singapore: World Scientific; https://doi.org/10.1142/1988

 

  1. Julia G. M´emoire sur l’it´eration des fonctions rationnelles. J Math Pures Appl. 1918;8:47–245. http://eudml.org/doc/234994

 

  1. Tan   Similarity  between  the Mandelbrot  set  and  Julia  sets. Commun   Math   Phys. 1990;134:587–617. https://doi.org/10.1007/BF02098448
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing