AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025420177
RESEARCH ARTICLE

FracSegNet: A deep learning image segmentation model for medical images of eye diseases

Shoutong Huang1* Yu Ma1* Huitan Chang1 Bowen Xiao1
Show Less
1 Department of Electronic Science and Technology, School of Electronic and Electrical Engineering, Ningxia University, Yinchuan, Ningxia, China
Received: 13 October 2025 | Revised: 16 November 2025 | Accepted: 21 November 2025 | Published online: 13 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Retinal vessel segmentation is essential for the diagnosis and treatment planning of retinal diseases, yet remains challenging due to weak edges, tiny branches, and complex background textures. In this paper, we propose Frac-SegNet, a deep segmentation network that integrates fractional-order modelling at the preprocessing, feature extraction, and loss levels to improve the continuity and robustness of retinal vessel extraction. First, a Grünwald–Letnikov fractional differential operator is used to generate multi-directional edge responses, which are concatenated with the original fundus image to form an augmented multi-channel input. Second, adaptive fractional-order convolution blocks are embedded into a U-Net–like encoder–decoder architecture, where learnable order weights dynamically fuse integer-order and fractional-order responses, enabling simultaneous modeling of local details and long-range dependencies. Third, a composite loss is designed by combining Dice loss, total variation (TV) regularization, and a fractional gradient constraint that enforces consistency between the fractional-order gradients of the prediction and the ground truth. Experiments on the DRIVE, STARE, and CHASE DB1 datasets demonstrated that FracSegNet achieved competitive or superior performance compared with state-of-the-art methods, with F1 scores above 0.83 and clear improvements in edge continuity and fine-branch preservation. These results indicate that fractional-order modeling provides an effective and generalizable paradigm for segmenting weak edges and delicate vascular structures in medical images.

Keywords
Deep learning
Digital retinal images for vessel extraction
Fractional differential operator
Image segmentation
Medical image processing
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Wang Y, Wang J, Guo P. Eye-UNet. A UNet- based network with attention mechanism for low-quality human eye image segmentation. Signal Image Video Process. 2023;17(4):1097- 1103.https://doi.org/10.1007/s11760-022-02316-x

 

  1. Chandra IS, Shastri RK, Kavitha D, Kumar KR, Manochitra S, Babu PB. CNN based color balancing and denoising technique for underwater images: CNN-CBDT. Meas Sens. 2023;28:100835. https://doi.org/10.1016/j.measen.2023.100835

 

  1. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: MICCAI 2015. Cham: Springer; 2015:234-241. https://doi.org/10.1007/978-3-319-24574-4 28

 

  1. Coelho C, Costa MFP, Ferr´as LL. Fractional calculus meets neural networks for computer vision: a survey. 2024;5(3):1391-1426. https://doi.org/10.3390/ai5030067

 

  1. Stember JN, Celik H, Krupinski E, Chang PD, Mutasa S, Lefkowicz A. Eye tracking for deep learning segmentation using convolutional neural networks. J Digit Imaging. 2019;32(4):597-604. https://doi.org/10.1007/s10278-019-00220-4

 

  1. Chen BZ, Liu YS, Zhang Z, et al. TransAttUnet: multi-level attention-guided U-Net with transformer for medical image segmentation. IEEE Trans Emerg Top Comput Intell. 2024;8(1):55- 68. https://doi.org/10.1109/TETCI.2023.3309626

 

  1. Dosovitskiy A,  Beyer  L,  Kolesnikov  A, et    An  image  is  worth  16 16  words: transformers  for  image  recognition at scale.  In:  Proc  ICLR;  2021.  Available at: https://openreview.net/forum?id=YicbFdNTTy

 

  1. Chen JN, Cheng J, Wang X, et al. Tran- sUNet: transformers make strong encoders for medical image segmentation. arXiv. Preprint posted online February 8, Available at: https://arxiv.org/abs/2102.04306

 

  1. Azad R, Al-Antary MT, Heidari M, Merhof D. TransNorm: transformer provides a strong spatial normalization mechanism for a deep segmentation model. IEEE Access. 2022;10:108205-108215. https://doi.org/10.1109/ACCESS.2022.3211501

 

  1. Guo DF, Terzopoulos    A  transformer- based  network  for  anisotropic  3D  medical   image   segmentation.   In:   Proc ICPR.   Milan,   Italy;   2021:8857-8861. https://doi.org/10.1109/ICPR48806.2021.9411990

 

  1. Zhang ZA, Wu CD, Coleman S, Tsakanikas V. DENSE-INception U-net  for medical  image    Comput Methods  Programs  Biomed.  2020;192:105395. https://doi.org/10.1016/j.cmpb.2020.105395

 

  1. Liu HX, Fang JX, Zhang ZJ, et al. Localized edge- region-based active contour for medical image segmentation. IET Image Process. 2021;15(7):1567- 1582. https://doi.org/10.1049/ipr2.12126

 

  1. Wang J, Wang W, Hu X, et al. Black-winged kite algorithm: a nature-inspired metaheuristic for solving benchmark functions and engineering problems. Artif Intell Rev. 2024;57(4):1-53. https://doi.org/10.1007/s10462-024-10723-4

 

  1. Arora R, Kumar S, Singh P. Fractional- order image enhancement using deep learning for medical imaging applications. Neurocomput- 2022;501:234-246

 

  1. Raubitzek S, Sabadas R, Latzko P. Combining fractional derivatives and convolutional neural networks for robust image denoising. Signal Process Image Commun. 2023;28:100835. https://doi.org/10.1016/j.imagecom.2022.116947

 

  1. Cao H, Wang Y, Chen J, et al. Swin-Unet: UNet-like pure transformer for medical image segmentation. In: Med Comput Vis Algorithms Big Data. Cham: Springer; 2022:205-218. https://doi.org/10.1007/978-3-031-25066-8 9

 

  1. Chen B,  Liu  Y,  Zhang  Z,  Lu  G, Kong AWK. TransAttUnet:  Multi-level attention- guided  U-Net  with  transformer  for medical  image    IEEE Trans Emerg  Top  Comput  Intell.  2023;7(5):1150- 1163.https://doi.org/10.1109/TETCI.2023.3309626

 

  1. Jiang L, He Y, Zhang J. TransDualSeg- Net: Transformer  dual-segmentation  net- work for retinal vessel extraction in OCT images. Comput Biol Med.  2025;173:108023. https://doi.org/10.1016/j.compbiomed.2024.108023

 

  1. Dai J,  Chen  W,  Chen  R,  et  Research  on  task  assignment  algorithm of heterogeneous  aircraft  cooperative  cluster  in  dynamic  scene.  Comput Electr Eng. 2023;110:108781.https://doi.org/10.1016/j.compeleceng.2023.108781

 

  1. Li X, Xie H, Zhang Z, Cai J. IterNet: Retinal im- age segmentation utilizing structural redundancy in vessel networks. In: Proc IEEE WACV ; 2020. https://doi.org/10.1109/WACV45572.2020.9093621

 

  1. Zhou Z, Siddiquee MR, Tajbakhsh N, Liang J. UNet++: A nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2018); 2018:3-11. https://doi.org/10.1007/978-3-030-00889-5 1

 

  1. Wu Y,  Sang  N,  Xiang    SCS-Net: scale  and  context  sensitive  network  for retinal  vessel  segmentation.  Med  Image Anal. 2021;70:102025.https://doi.org/10.1016/j.media.2021.102025

 

  1. Mou L, Zhao Y, Chen L, et al. CS2-Net: Curvilinear structure segmentation network for retinal vessel extraction. Med Image Anal. 2021;67:101874. https://doi.org/10.1016/j.media.101874

 

  1. Liu H, Fang J, Zhang Z. FR-UNet: Full- resolution network for medical image segmentation. IET Image Process. 2022;16(7):1567-1582. https://doi.org/10.1109/JBHI.2022.3188710

 

  1. Abdulsahib G, Al-Antary MT, Merhof D. Train- able filters for retinal vessel segmentation. Signal Process Image Commun. 2022;114:116947. https://doi.org/10.1016/j.imagecom.2022.116947

 

  1. Liu X,  Wang  Y,  Zhang    Wave- Net:     Multi-frequency representation learning  for  retinal  vessel segmentation.  Comput Biol Med. 2023;170:106337. https://doi.org/10.1016/j.compbiomed.2022.106337

 

  1. Liu X,  Fang  J,  Chen    ResDO-UNet: Dual-orthogonal  residual  learning  for  retinal  vessel  segmentation.  Biomed  Signal  Process  Control.   2023;84:104810. https://doi.org/10.1016/j.bspc.2023.104810

 

  1. Li J, Gao G, Yang L, Bian G, Liu Y. DPF- Net: A dual-path progressive fusion network for retinal vessel segmentation. IEEE Trans Instru Meas. 2023;72:1-17
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing