Automated classification of pediatric acute lymphoblastic leukemia: A ResNet-50 deep learning approach
Early detection of acute lymphoblastic leukemia (ALL) is crucial for improving survival outcomes in children. Manual diagnosis through microscopic examination is often time-consuming and subject to human error. This study presents an automated classification framework for pediatric ALL using a fine-tuned Residual Network (ResNet)-50 deep learning architecture. The model was trained and validated on 15,135 segmented blood smear images collected from 118 pediatric patients in the publicly available ALL IDB Version 2 dataset. Data augmentation and patient-wise splitting were applied to ensure model generalization and prevent data leakage. The fine-tuned ResNet-50 achieved a mean classification accuracy of 99.60%, with precision, recall, and F1-score of 99.45%, 99.40%, and 99.42%, respectively, outperforming baseline convolutional neural network models. Statistical validation (p < 0.0015) confirmed that these performance improvements are highly significant. This study highlights the potential of ResNet-50 for reliable, automated, and reproducible leukemia diagnosis, offering clinical decision support for early detection and treatment planning.

- Bhargavav M. Acute lymphoblastic leukemia. In: Hematologic Malignancies: Case Studies in Cytogenetic and Molecular Genetics. Singapore: Springer Singapore; 2021;151-193. https://doi.org/10.1007/978-981-33-4799-1
- Genovese A, Hosseini MS, Piuri V, Plataniotis KN, Scotti F. Acute lymphoblastic leukemia detection based on adaptive un- sharpening and deep learning. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE; 2021;1205- 1209.https://doi.org/10.1109/ICASSP39728.9414362
- Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395:(10230):1146-1162. https://doi.org/10.1016/S0140-6736(19)33018-1
- Leong SP, Witte MH. Lymphangiogenesis: Lymphatic system and lymph nodes; cancer lymphangiogenesis and metastasis. In: Cancer Metastasis Through the Lymphovascular System. New York: Springer; 2022:209-229. https://doi.org/10.1007/978-3-030-93084-4 21
- Genovese A, Hosseini MS, Piuri V, Plataniotis KN, Scotti Histopathological transfer learning for acute lymphoblastic leukemia detection. In: 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). New York: IEEE. 2021:1-6. doi: 10.1109/CIVEMSA52099.2021.9493677
- Jenkins, E. The biology of leukemia: the cancer of the blood. Microrev Cell Mol Biol. 2022; 9.
- Okikiolu J, Dillon R, Raj Acute leukaemia. Medicine. 2021;49(5):274-281. doi.org/10.1016/j.mpmed.2021.02.004
- Chiorazzi N, Chen SS, Rai KR. Chronic lymphocytic Cold Spring Harb Perspect Med. 2021;11(2):a035220. https://doi.org/10.1101/cshperspect.a035220
- Osman AE, Deininger MW. Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 2021;49:100825. https://doi.org/10.1016/j.blre.2021.100825
- Stacy NI, Harvey JW. Structure of the bone marrow. In: Schalm’s Veterinary Hematology. Hoboken, NJ: Wiley-Blackwell; 2022;18-26. https://doi.org/10.1002/9781119500537.ch3
- Li R, Ma J, Chan Y, Yang Q, Zhang C. Symptom clusters and influencing factors in children with acute leukemia during chemotherapy. Cancer Nurs. 2022;43(5):411-418. https://doi.org/10.1097/NCC.0000000000000716
- Hao TK, Hiep PN, Hoa NT, Ha Causes of death in childhood acute lymphoblastic leukemia at Hue Central Hospital for 10 years (2008–2018). Glob Pediatr Health. 2020;7:2333794X20901930. https://doi.org/10.1177/2333794X20901930
- Varghese N. Machine learning techniques for the classification of blood cells and the prediction of Int J Comput Sci Eng. 2020;9(1):66-75.
- Khalil AJ, Abu-Naser SS. Diagnosis of blood cells using deep learning. J. Acad. Eng. Res. 2022;6(2):69-84.
- V´elez-Rodr´ıguez I, Carranza-Aranda Damage mechanism of CK2 and IKAROS in Philadelphia-like acute lymphoblastic leukemia. J Biosci Med. 2024;12(4):49-59. https://doi.org/10.4236/jbm.2024.124005
- Shiraz P, Jehangir W, Agrawal V. T-cell acute lymphoblastic leukemia—current concepts in molecular biology and management. 2021;9(11):1621. https://doi.org/10.3390/biomedicines9111621
- Khan S, Sajjad M, Hussain T, Ullah A, Imran A review on traditional machine learning and deep learning models for WBCs classification in blood smear images. IEEE Access. 2020;9:10657-10673. https://doi.org/10.1109/ACCESS.2020.3048172
- Yeasmin MN, Amin M, Joti TJ, Aung Z, Azim Advances of AI in image-based computer-aided diagnosis: a review. Array. 2024;3:100357. https://doi.org/10.1016/j.array.2024.100357
- Kumar A, Tyagi V, Singh H, Jain S. Advancing medical diagnostics on computer-assisted analysis for digital medicinal imagery. In: Computer-Assisted Analysis for Digital Medicinal Imagery. Hershey, PA: IGI Global; 2025:393-408. https://doi.org/10.4018/979-8-3693-5226-7.ch015
- Zangana HM, Mohammed AK, Mustafa FM. Advancements and applications of convolutional neural networks in im- age analysis: a comprehensive review. J Ilm Comput 2024;3(1):16-29. https://doi.org/10.58602/jics.v3i1.30
- Aydın S, Altun Early prediction of fabric quality using machine learning to reduce rework in manufacturing processes. Int. J. Op- timiz. Contro. 2024;14(4):308-321. https://doi.org/10.11121/ijocta.1462
- Ghazi FF, Tawfiq Design optimal neural network based on new LM training algorithm for solving 3D-PDEs. Int J Optimiz Contro. 2024;14(3):249-260. https://doi.org/10.11121/ijocta.1519
- Paswan S, Rathore YK. Detection and classification of blood cancer from microscopic cell images using SVM KNN and NN classifier. Int J Adv Res Ideas Innov Technol. 2017;3:315-324.
- Calgan Optimal C-type filter design for wireless power transfer system by using support vector machines. Int J Optimiz Contro. 2023;13(2):151-160. https://doi.org/10.11121/ijocta.2023.1354
- Abd Halim NH, Mashor MY, Hassan R. Classification of acute leukemia based on multilayer J Phys Conf Ser. 2019;1372(1). https://doi.org/10.1088/1742-6596/1372/1/012044
- Dasariraju S, Huo M, McCalla S. Detection and classification of immature leukocytes for diagnosis of acute myeloid leukemia using random forest algorithm. 2020;7(4):120. https://doi.org/10.3390/bioengineering7040120
- Prakisya NP, Liantoni F, Hatta P, Aristyagama YH, Setiawan A. Utilization of K-nearest neighbor algorithm for classification of white blood cells in AML M4, M5, and M7. Open Eng. 2021;11(1):662-668. https://doi.org/10.1515/eng-2021-0065
- Jafarpisheh N, Zaferani EJ, Teshnehlab M, Karimipour H, Parizi RM, Srivastava G. A deep neural network combined with radial basis function for abnormality classification. Mobile Netw Appl. 2021;26(6):2318- 2328. https://doi.org/10.1007/s11036-021-01835-0
- Rismayanti N, Naswin A, Zaky U, Zakariyah M, Purnamasari DA. Evaluating thresholding- based segmentation and humoment feature ex- traction in acute lymphoblastic leukemia classification using Gaussian na¨ıve Bayes. Int J Artif Intell Med Issues. 2023;1(2):74-83. https://doi.org/10.56705/ijaimi.v1i2.99
- Yan T, Wong PK, Ren H, Wang H, Wang J, Li Y. Automatic distinction between COVID- 19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos Solitons Fractals. 2020;140:110153. https://doi.org/10.1016/j.chaos.2020.110153
- Kumar A, Kumar M, Goswami P. Numerical solution of coupled system of Emden-Fowler equations using artificial neural network technique. Int J Optimiz Contro. 2024;14(1):62-73.
- Liu Y, Pu H, Sun, DW. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci Technol. 2021;113:193-204. https://doi.org/10.1016/j.tifs.2021.04.042
- Hussain E, Hasan M, Rahman MA, Lee I, Tamanna T, Parvez MZ. CoroDet: a deep learning-based classification for COVID- 19 detection using chest X-ray images. Chaos Solitons Fractals. 2021;142:110495. https://doi.org/10.1016/j.chaos.2020.110495
- Sipes R, Li D. Using convolutional neural networks for automated fine- grained image 753848415classifica- tion753848415CECE7538484151205634038AU: In: 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). New York: IEEE; 2018:157-161. https://doi.org/10.1109/ICCIA.2018.00036
- Shafique S, Tehsin S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol Cancer Res Treat. 2018;17:1533033818802789. https://doi.org/10.1177/1533033818802789
- Pansombut T, Wikaisuksakul S, Khongkraphan K, Phon-On A. Convolutional neural networks for recognition of lymphoblast cell images. Comput Intell Neurosci. 2019;(1):7519603. https://doi.org/10.1155/2019/7519603
- de Oliveira JEM, Dantas DO. Classification of normal versus leukemic cells with data augmentation and convolutional neural networks. In: Proceeding of the VISIGRAPP. Setu´bal, Portugal: SciTePress; 4:685-692. https://doi.org/10.5220/0010257406850692
- Zolfaghari M, Sajedi H. A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells. Multimed Tools Appl. 2020;81:6723-6753. https://doi.org/10.1007/s11042-022-12108-7
- Huang Y, Zhang J, Liu R, Zhao S. Improving accuracy and interpretability of CNN-based fault diagnosis through an attention mechanism. Processes. 2023;11(11):3233. https://doi.org/10.3390/pr11113233
- Kadhim KA, Najjar FH, Waad AA, Al-Kharsan IH, Khudhair ZN, Salim AA. Leukemia classification using a convolutional neural network of AML images. Mal J Fund Appl Sci. 2023;19(3):306-312. https://doi.org/10.11113/mjfas.v19n3.2901
- Kanavati F, Ichihara S, Tsuneki M. A deep learning model for breast ductal carcinoma in situ classification in whole slide images. Virchows Arch., 2022;480(5):1009-1022. https://doi.org/10.1007/s00428-021-03241-z
- Mustaqim T, Fatichah C, Suciati N. Deep learning for the detection of acute lymphoblastic leukemia subtypes on microscopic images: a systematic literature re- view. IEEE Access. 2023;11:16108-16127. https://doi.org/10.1109/ACCESS.2023.3245128
- Genovese A, Piuri V, Scotti F. A decision sup- port system for acute lymphoblastic leukemia detection based on explainable artificial intelligence. Image Vis Comput. 2024;151:105298. https://doi.org/10.1016/j.imavis.2024.105298
- Archana R, Jeevaraj PE. Deep learning models for digital image processing: A review. Artif Intell Rev. 2024;57:11. https://doi.org/10.1007/s10462-023-10631-z
- Talukder MA, Layek MA, Kazi M, Uddin MA, Aryal S. Empowering COVID-19 detection: optimizing performance through fine-tuned efficient net deep learning architecture. Comput Biol Med. 2024;168:107789. https://doi.org/10.1016/j.compbiomed.2023.107789
- Genovese A. ALLNet: acute lymphoblastic leukemia detection using lightweight convolutional networks. In: 2022 IEEE 9th International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applica- tions (CIVEMSA), New York; 2022:1-6. https://doi.org/10.1109/CIVEMSA53371.2022.9853691
- Kochhar A, Kaur P. Leveraging transfer learning for acute lymphoblastic leukemia cell classification: a deep learning approach. In: International Conference on Innovative Computing and Communication. Singapore: Springer Nature Singa- pore; 2025:187-200. https://doi.org/10.1007/978- 981-96-7137-3 14
- Muduli D, Parija S, Kumari S, Hassan A, Jangwan HS, Zamani AT, et al. Deep learning-based detection and classification of acute lymphoblastic leukemia with explainable AI techniques. Array. 2025;26. https://doi.org/10.1016/j.array.2025.100397
- El Houby EM. Acute lymphoblastic leukemia diagnosis using machine learning techniques based on selected features. Sci Rep. 2025;15(1):28056. https://doi.org/10.1038/s41598-025-12361-4
- Harithanush S, Poojitha K, Shalini R, Vandana B, Nithya R. LeukemiaVisionNet-21 deep neural network for automated acute lymphoblastic leukemia (ALL) classification. In: 2025 3rd International Conference on Data Science and Information Systems (ICDSIS). New York: IEEE; 2025:1-7. https://doi.org/10.1109/ICDSIS65355.2025.11070368
- Genovese A, Piuri V, Scotti F. ALL- IDB patches: whole slide imaging for acute lymphoblastic leukemia detection using deep learning. In: 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), New York: IEEE; 2023:1-5. https://doi.org/10.1109/ICASSPW59220.2023.10193429
- Okundalaye OO, O¨ zdemir N, Evirgen F. Leveraging machine learning for early and accurate anaemia diagnosis: a comparative study of classification algorithms. In: International Conference on Mathematical Modelling, Applied Analysis and Computation. Cham: Springer Nature; 2025:42- 52.
- Okundalaye O, Ozdemir N, Rotimi B, Akanbi F. Climate-based predictive modeling of malaria incidence using statistical and machine learning approaches. Trans Comput Model Intell Syst. 2025;1:10014. https://doi.org/10.65112/tcmis.10014
- Sher M, Shah K, Ali Z, Abdeljawad T, Alqudah M. Using deep neural network in computational analysis of coupled systems of fractional integro-differential equations. J Com- put Appl Math. 2025;474:116912. https://doi.org/10.1016/j.cam.2025.116912
- Emin B, Alaca Y, Akme¸se O¨ F, Karaca Y, Akgu¨l A. Pixel map-based hybrid ai framework for early and accurate cardiovascular disease diagnosis. J Comput Appl Math. 2026;476:117095. https://doi.org/10.1016/j.cam.2025.117095
- Hamou AA, Rasul RR, Hammouch Z, O¨ zdemir N. Analysis and dynamics of a mathematical model to predict unreported cases of COVID-19 epidemic in Morocco. Comp Appl Math. 2022;41:289. https://doi.org/10.1007/s40314-022-01990-4
- Genovese A, Piuri V, Plataniotis KN, Scotti F. DL4ALL: multi-task cross-dataset transfer learning for acute lymphoblastic leukemia detection. IEEE Access. 2023;11:65222-65237. https://doi.org/10.1109/ACCESS.2023.3289219
- Okundalaye OO, O¨ zdemir N, Awonusika RO. Early breast cancer prediction using optimized machine learning and tumor-immune modeling. J Comput Appl Math. 2026;473:116875. https://doi.org/10.1016/j.cam.2025.116875
- Olumide OO. Fractional-order gradient de- scent for enhancing deep learning optimization. Asian Res J Math. 2025;21(8):40-50. https://doi.org/10.9734/arjom/2025/v21i8970
- Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med. 2014;62(3):179-191. https://doi.org/10.1016/j.artmed.2014.09.002
- Joshi MD, Karode AH, Suralkar S. White blood cells segmentation and classification to detect acute leukemia. Int J Emerg Trends Technol Comput Sci. 2013;2(3):147-151.
- Chatap N, Shibu S. Analysis of blood samples for counting leukemia cells using support vector machine and nearest neigh- bour. IOSR J Comput Eng. 2014;16(5):79-87. https://doi.org/10.9790/0661-16537987
- MoradiAmin M, Samadzadehaghdam N, Kermani S, Talebi A. Enhanced recognition of acute lymphoblastic leukemia cells in microscopic im- ages based on feature reduction using principle component analysis. Front Biomed Technol. 2015;2(3):128-136.
- Rawat J, Singh A, Bhadauria HS, Virmani J, Devgun JS. Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed Tools Appl. 2017;76(18):19057-19085. https://doi.org/10.1007/s11042-017-4478-3
