Geometric analysis of ruled surfaces constructed from integral curves in three-dimensional Euclidean space
Ruled surfaces, defined by the motion of a straight line along a space curve, represent a fundamental class of surfaces in differential geometry with significant applications in engineering design, architectural modeling, and computer graphics. Despite their classical nature, the construction of ruled surfaces from integral curves, solutions to differential systems derived from Frenet frames, remains relatively unexplored in the literature. This paper presents a detailed geometric study of a new class of ruled surfaces constructed from integral curves associated with the Frenet frame of regular space curves with positive curvature. We focus on surfaces whose base curves are given by the integral binormal and integral normal curves of a given spatial curve. Explicit expressions for the fundamental forms, curvature properties, and striction curves are derived for six distinct types of surfaces. Necessary and sufficient conditions under which these surfaces are minimal or developable are established. A numerical example illustrates the theoretical results, highlighting potential applications in geometric modeling. This work extends the theory of ruled surfaces in differential geometry by introducing families based on integral curves and providing a complete geometric characterization via fundamental forms and curvature analysis.

- Do Carmo MP. Differential geometry of curves and surfaces. Prentice-Hall; 1976.
- Andradas C, Recio T, Tabera LF, Sendra JR, Villarino C. Proper real reparametrization of rational ruled Com- put Aided Geom Des. 2011;28(2):102-113. https://doi.org/10.1016/j.cagd.2010.12.001
- O’Neill Elementary differential geometry. 2nd Ed. Academic Press; 2006. https://doi.org/10.1016/C2009-0-05241-6
- Elsharkawy A, Elsayied H, Refaat Quasi ruled surfaces in Euclidean 3-space. Eur J Pure Appl Math. 2025;18(1):5710. https://doi.org/10.29020/nybg.ejpam.v18i1.5710
- Abdel-All NH, Abdel-Baky RA, Hamdoon FM. Ruled surfaces with timelike rul Appl Math Comput. 2004;147:241-253. https://doi.org/10.1016/S0096-3003(02)00664-1
- Lopez R. A connection between minimal surfaces and the two-dimensional analogues of a problem of Euler. Ann Mat Pura Appl. 2025:1-11. https://doi.org/10.1007/s10231-025-01593-w
- Coleman C. A certain class of integral curves in 3-space. Ann Math. 1995;69(3):678-685.
- Duldul M. Integral curves connected with a framed curve in 3-space. Honam Math J. 2023;45(1):130-145.
- Elsharkawy A, Baizeed H. Some integral curves according to quasi-frame in Euclidean 3-space. Sci Afr. 2025;27:e02583. https://doi.org/10.1016/j.sciaf.2025.e02583
- Ku¨hnel W. Differential Geometry: Curves, sur- faces, manifolds. 2nd Ed. American Mathematical Society; 2002. https://doi.org/10.1090/stml/077
- Ali AT, Aziz HSA, Sorour AH. Ruled surfaces generated by some special curves in Euclidean 3-space. J Egypt Math Soc. 2013;21(3):285-294. https://doi.org/10.1016/j.joems.2013.02.004
- Almoneef AA, Abdel-Baky RA. Timelike constant axis ruled sur- face family in Minkowski 3-space. 2024;16(6):677. https://doi.org/10.3390/sym16060677
- Buse L, Elkadi M, Galligo A. A computational study of ruled surfaces. J Symb 2009;44(3):232-241. https://doi.org/10.1016/j.jsc.2007.04.005
- Peternell M, Pottmann H, Ravani B. On the computational geometry of ruled surfaces. Comput Aided Des. 1999;31(1):17-32. https://doi.org/10.1016/S0010-4485(98)00077-3
- Pottmann H, Lu Y, Ravani Rational ruled surfaces and their offsets. Graph Models Image Process. 1996;58(6):544-552. https://doi.org/10.1006/gmip.1996.0042
- Solouma E, Al-Dayel I, Khan MA, Lazer Characterization of imbricateruled surfaces via rotation-minimizing Darboux frame in Minkowski 3-space E3. AIMS Math. 2024;9:13028-13042. https://doi.org/10.3934/math.2024635
- Turgut A, Hacisalihoglu Timelike ruled surfaces in the Minkowski 3- space. Far East J Math Sci. 1997;5:83- 90.
- Chen Y, Shen LY, Yuan Collision and intersection detection of two ruled surfaces using bracket method. Comput Aided Geom Des. 2011;28(2):114-126. https://doi.org/10.1016/j.cagd.2010.11.002
- Li Y, Abdel-Aziz H S, Serry HM, et al. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space. AIMS Math. 2024;9(9):25619-25635. https://doi.org/10.3934/math.20241251
- Atalay GS¸. On the characterisations of ruled surface pairs according to the Sab- ban Filomat. 2025;39(11):3705-3717. https://doi.org/10.2298/FIL2511705S
- Eren K, Carli M, Ersoy Developability of ruled surfaces generated by curves at a constant distance from the non- null curve. J Sci Arts. 2025;25(3):529-542. https://doi.org/10.46939/J.Sci.Arts-25.3-a06
- Eren K, Ersoy S, Khan MNI. Novel theorems on constant angle ruled surfaces with Sasai’s interpretation. AIMS Math. 2025;10(4):8364-8381. https://doi.org/10.3934/math.2025385
- Eren K, Ersoy S, Khan MNI. Simultaneous characterizations of alternative partner- ruled surfaces. AIMS Math. 2025;10(4):8891- 8906. https://doi.org/10.3934/math.2025407
- C¸ alı¸skan A, Eren K, Ersoy S. Dual magnetic curves and flux ruled surfaces. Int J Geom Methods Mod Phys. 2025;22(2):2450273. https://doi.org/10.1142/S0219887824502736
- Li Y, Eren K, Ersoy S, Savi´c A. Modified sweeping surfaces in Euclidean 3-space. 2024;13(11):800. https://doi.org/10.3390/axioms13110800
- Balti´c V, Eren K, Savi´c A, Ersoy S. Constant angle ruled surfaces with a pointwise 1- type Gauss map. Mathematics. 2024;12(12):1861. https://doi.org/10.3390/math12121861
- Eren K, Caliskan A, Senyurt S. On spatial quaternionic Smarandache ruled Honam Math J. 2024;46(2):209-223. https://doi.org/10.5831/HMJ.2024.46.2.209
- Li Y, Eren K, Ersoy S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023;8(9):22256-22273. https://doi.org/10.3934/math.20231135
- Alegre P, Arslan K, Carriazo A, Murathan C, Oz- turk G. Some special types of developable ruled surface. Hacet J Math Stat. 2010;39(3):319-325.
- Kim YH, Yoon Classification of ruled surfaces in Minkowski 3- spaces. J Geom Phys. 2004;49(1):89-100. https://doi.org/10.1016/S0393-0440(03)00084-6
- Elsharkawy A, Elshenhab AM. Mannheim curves and their partner curves in Minkowski 3- space E3. Demonstr Math. 2022;55(1):798-811. https://doi.org/10.1515/dema-2022-0163
- Elsharkawy N, Cesarano C, Dmytryshyn R, Elsharkawy Timelike spherical curves according to equiform Bishop frame in 3-dimensional Minkowski space. Carpathian Math Publ. 2023;15(2):388-395. https://doi.org/10.15330/cmp.15.2.388-395
- Elsharkawy A, Cesarano C, Tawfiq A, Ismail AA. The non-linear Schr¨odinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Math. 2022;7(10):17879-17893. https://doi.org/10.3934/math.2022985
- Elsharkawy A. Exploring Hasimoto surfaces within equiform geometry in Minkowski space. Phys 2024;100(1):016101. https://doi.org/10.1088/1402-4896/ad954e
- Tashkandy Y, Emam W, Cesarano C, El-Raouf MA, Elsharkawy Generalized spacelike normal curves in Minkowski three-space. Mathematics. 2022;10(21):4145. https://doi.org/10.3390/math10214145
- Elsharkawy A, Tashkandy Y, Emam W, Cesarano C, Elsharkawy N. On some quasi-curves in Galilean three-space. 2023;12(9):823. https://doi.org/10.3390/axioms12090823
- Elsharkawy A, Turan M, Bozok H. Involute- evolute curves with modified orthogonal frame in Galilean space G3. Ukr Math J. 2024;76(10):1444- 1454. https://doi.org/10.1007/s11253-024-02383-w
- Bozok HG, Elsharkawy A. Evolution of curves with modified orthogonal frame in G3. Int J Geom Methods Mod Phys. 2025:2550311. https://doi.org/10.1142/S0219887825503116
- Elsharkawy A, Elsharkawy Quasiposition vector curves in Galilean 4- space. Front Phys. 2024;12:1400730. https://doi.org/10.3389/fphy.2024.1400730
- Elsharkawy A, Elsharkawy N. Some characterizations of quasi-curves in Galilean 3- space. Eur J Pure Appl Math. 2025;18(2):5875. https://doi.org/10.29020/nybg.ejpam.v18i2.5875
- Elshenhab AM, Moaaz O, Dassios I, Elsharkawy A. Motion along a space curve with a quasi-frame in Euclidean 3-space: Acceleration and Jerk. 2022;14(8):1610. https://doi.org/10.3390/sym14081610
- Elsharkawy A, Cesarano C, Baizeed H. Construction and analysis of Smarandache curves for integral binormal curves in Euclidean 3-space. Univ J Math Appl. 2025;8(3):149-157. https://doi.org/10.32323/ujma.1739984
- Elsharkawy A, Hamdani H, Cesarano C, Elsharkawy N. Geometric properties of Smarandache ruled surfaces generated by integral binormal curves in Euclidean 3-space. Partial Differ Equ Appl 2025:101298. https://doi.org/10.1016/j.padiff.2025.101298
- Baizeed H, Elsharkawy A, Cesarano C, Ramadan AA. Smarandache curves for the integral curves with the quasi frame in Euclidean 3-space. Azerb J 2025;15(2):219-239. https://doi.org/10.59849/2218-6816.2025.2.219
