AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025450196
RESEARCH ARTICLE

Geometric analysis of ruled surfaces constructed from integral curves in three-dimensional Euclidean space

Ayman Elsharkawy1* Hasnaa Baizeed2 Clemente Cesarano3 SeyedehFahimeh Hashemi3
Show Less
1 Department of Mathematics, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
2 Department of Mathematics, Faculty of Science, Beni Suef University, Beni Suef, Egypt
3 Section of Mathematics, International Telematic University Uninettuno, Roma, Italy
Received: 5 November 2025 | Revised: 1 December 2025 | Accepted: 16 December 2025 | Published online: 9 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ruled surfaces, defined by the motion of a straight line along a space curve, represent a fundamental class of surfaces in differential geometry with significant applications in engineering design, architectural modeling, and computer graphics. Despite their classical nature, the construction of ruled surfaces from integral curves, solutions to differential systems derived from Frenet frames, remains relatively unexplored in the literature. This paper presents a detailed geometric study of a new class of ruled surfaces constructed from integral curves associated with the Frenet frame of regular space curves with positive curvature. We focus on surfaces whose base curves are given by the integral binormal and integral normal curves of a given spatial curve. Explicit expressions for the fundamental forms, curvature properties, and striction curves are derived for six distinct types of surfaces. Necessary and sufficient conditions under which these surfaces are minimal or developable are established. A numerical example illustrates the theoretical results, highlighting potential applications in geometric modeling. This work extends the theory of ruled surfaces in differential geometry by introducing families based on integral curves and providing a complete geometric characterization via fundamental forms and curvature analysis.

Graphical abstract
Keywords
Ruled surfaces
Integral curves
Frenet frame
Euclidean space
Gaussian curvature
Mean curvature
Funding
None.
Conflict of interest
The authors declare no competing interests.
References
  1. Do Carmo MP. Differential geometry of curves and surfaces. Prentice-Hall; 1976.

 

  1. Andradas C, Recio T, Tabera LF, Sendra JR, Villarino C. Proper real reparametrization of  rational  ruled  Com- put Aided Geom Des. 2011;28(2):102-113. https://doi.org/10.1016/j.cagd.2010.12.001

 

  1. O’Neill   Elementary  differential  geometry. 2nd Ed. Academic Press; 2006. https://doi.org/10.1016/C2009-0-05241-6

 

  1. Elsharkawy A,  Elsayied  H,  Refaat  Quasi ruled surfaces in Euclidean 3-space. Eur J Pure Appl Math. 2025;18(1):5710. https://doi.org/10.29020/nybg.ejpam.v18i1.5710

 

  1. Abdel-All NH, Abdel-Baky RA, Hamdoon FM. Ruled surfaces with timelike rul Appl Math Comput. 2004;147:241-253. https://doi.org/10.1016/S0096-3003(02)00664-1

 

  1. Lopez R. A connection between minimal surfaces and the two-dimensional analogues of a problem of Euler. Ann Mat Pura Appl. 2025:1-11. https://doi.org/10.1007/s10231-025-01593-w

 

  1. Coleman C. A certain class of integral curves in 3-space. Ann Math. 1995;69(3):678-685.

 

  1. Duldul M. Integral curves connected with a framed curve in 3-space. Honam Math J. 2023;45(1):130-145.

 

  1. Elsharkawy A, Baizeed H. Some integral curves according to quasi-frame in Euclidean 3-space. Sci Afr. 2025;27:e02583. https://doi.org/10.1016/j.sciaf.2025.e02583

 

  1. Ku¨hnel W. Differential Geometry: Curves, sur- faces, manifolds. 2nd Ed. American Mathematical Society; 2002. https://doi.org/10.1090/stml/077

 

  1. Ali AT, Aziz HSA, Sorour AH. Ruled surfaces generated by some special curves in Euclidean 3-space. J Egypt Math Soc. 2013;21(3):285-294. https://doi.org/10.1016/j.joems.2013.02.004

 

  1. Almoneef AA, Abdel-Baky RA. Timelike  constant  axis  ruled sur- face   family   in   Minkowski 3-space.      2024;16(6):677. https://doi.org/10.3390/sym16060677

 

  1. Buse L, Elkadi M, Galligo A. A computational study of  ruled surfaces. J  Symb  2009;44(3):232-241. https://doi.org/10.1016/j.jsc.2007.04.005

 

  1. Peternell M, Pottmann H, Ravani B. On the computational geometry of ruled surfaces. Comput Aided Des. 1999;31(1):17-32. https://doi.org/10.1016/S0010-4485(98)00077-3

 

  1. Pottmann H, Lu  Y,  Ravani  Rational ruled surfaces and their offsets. Graph Models  Image  Process. 1996;58(6):544-552. https://doi.org/10.1006/gmip.1996.0042

 

  1. Solouma E, Al-Dayel  I,  Khan MA, Lazer    Characterization  of imbricateruled   surfaces   via rotation-minimizing Darboux  frame  in  Minkowski 3-space E3.   AIMS  Math. 2024;9:13028-13042. https://doi.org/10.3934/math.2024635

 

  1. Turgut A, Hacisalihoglu  Timelike ruled  surfaces  in  the  Minkowski 3- space.  Far  East  J  Math  Sci. 1997;5:83- 90.

 

  1. Chen Y, Shen  LY,  Yuan  Collision and  intersection  detection  of  two ruled surfaces  using  bracket  method. Comput  Aided  Geom  Des.  2011;28(2):114-126. https://doi.org/10.1016/j.cagd.2010.11.002

 

  1. Li Y, Abdel-Aziz H S, Serry HM, et al. Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space. AIMS Math. 2024;9(9):25619-25635. https://doi.org/10.3934/math.20241251

 

  1. Atalay GS¸. On  the  characterisations  of ruled surface pairs according to the Sab- ban    Filomat. 2025;39(11):3705-3717. https://doi.org/10.2298/FIL2511705S

 

  1. Eren K, Carli  M,  Ersoy    Developability  of  ruled  surfaces  generated  by curves at  a  constant  distance  from  the non- null curve. J Sci Arts. 2025;25(3):529-542. https://doi.org/10.46939/J.Sci.Arts-25.3-a06

 

  1. Eren K, Ersoy S, Khan MNI. Novel theorems on constant angle ruled surfaces with Sasai’s interpretation. AIMS Math. 2025;10(4):8364-8381. https://doi.org/10.3934/math.2025385

 

  1. Eren K, Ersoy S, Khan MNI. Simultaneous characterizations of alternative partner- ruled surfaces. AIMS Math. 2025;10(4):8891- 8906. https://doi.org/10.3934/math.2025407

 

  1. C¸ alı¸skan A, Eren K, Ersoy S. Dual magnetic curves and flux ruled surfaces. Int J Geom Methods Mod Phys. 2025;22(2):2450273. https://doi.org/10.1142/S0219887824502736

 

  1. Li Y, Eren  K,  Ersoy  S,  Savi´c A. Modified   sweeping   surfaces   in Euclidean  3-space.  2024;13(11):800. https://doi.org/10.3390/axioms13110800

 

  1. Balti´c V, Eren K, Savi´c A, Ersoy S. Constant angle ruled surfaces with a pointwise 1- type Gauss map. Mathematics. 2024;12(12):1861. https://doi.org/10.3390/math12121861

 

  1. Eren K, Caliskan A, Senyurt S. On spatial quaternionic Smarandache  ruled    Honam Math J. 2024;46(2):209-223. https://doi.org/10.5831/HMJ.2024.46.2.209

 

  1. Li Y, Eren K, Ersoy S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023;8(9):22256-22273. https://doi.org/10.3934/math.20231135

 

  1. Alegre P, Arslan K, Carriazo A, Murathan C, Oz- turk G. Some special types of developable ruled surface. Hacet J Math Stat. 2010;39(3):319-325.

 

  1. Kim YH, Yoon  Classification of  ruled  surfaces  in  Minkowski  3- spaces.  J  Geom  Phys. 2004;49(1):89-100. https://doi.org/10.1016/S0393-0440(03)00084-6

 

  1. Elsharkawy A, Elshenhab AM. Mannheim curves and their partner curves in Minkowski 3- space E3. Demonstr Math. 2022;55(1):798-811. https://doi.org/10.1515/dema-2022-0163

 

  1. Elsharkawy N, Cesarano  C,  Dmytryshyn R,  Elsharkawy    Timelike spherical curves  according  to  equiform Bishop frame  in  3-dimensional  Minkowski space. Carpathian  Math  Publ. 2023;15(2):388-395. https://doi.org/10.15330/cmp.15.2.388-395

 

  1. Elsharkawy A, Cesarano C, Tawfiq A, Ismail AA. The non-linear Schr¨odinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Math. 2022;7(10):17879-17893. https://doi.org/10.3934/math.2022985

 

  1. Elsharkawy A. Exploring Hasimoto surfaces within equiform geometry  in Minkowski space.  Phys  2024;100(1):016101. https://doi.org/10.1088/1402-4896/ad954e

 

  1. Tashkandy Y, Emam  W,  Cesarano C, El-Raouf  MA,  Elsharkawy  Generalized spacelike normal curves in Minkowski three-space.  Mathematics. 2022;10(21):4145. https://doi.org/10.3390/math10214145

 

  1. Elsharkawy A, Tashkandy Y, Emam W, Cesarano C, Elsharkawy N. On some quasi-curves in Galilean three-space. 2023;12(9):823. https://doi.org/10.3390/axioms12090823

 

  1. Elsharkawy A, Turan M, Bozok H. Involute- evolute curves with modified orthogonal frame in Galilean space G3. Ukr Math J. 2024;76(10):1444- 1454. https://doi.org/10.1007/s11253-024-02383-w

 

  1. Bozok HG, Elsharkawy A. Evolution of curves with modified orthogonal frame in G3. Int J Geom Methods Mod Phys. 2025:2550311. https://doi.org/10.1142/S0219887825503116

 

  1. Elsharkawy A, Elsharkawy    Quasiposition  vector  curves  in  Galilean  4- space.    Front  Phys. 2024;12:1400730. https://doi.org/10.3389/fphy.2024.1400730

 

  1. Elsharkawy A, Elsharkawy N. Some characterizations of quasi-curves in Galilean 3- space. Eur J Pure Appl Math. 2025;18(2):5875. https://doi.org/10.29020/nybg.ejpam.v18i2.5875

 

  1. Elshenhab AM, Moaaz O, Dassios I, Elsharkawy A. Motion along a space curve with a quasi-frame in Euclidean 3-space: Acceleration and Jerk. 2022;14(8):1610. https://doi.org/10.3390/sym14081610

 

  1. Elsharkawy A, Cesarano C, Baizeed H. Construction and analysis of Smarandache curves for integral binormal curves in Euclidean 3-space. Univ J Math Appl. 2025;8(3):149-157. https://doi.org/10.32323/ujma.1739984

 

  1. Elsharkawy A, Hamdani  H,  Cesarano  C, Elsharkawy N. Geometric properties of Smarandache  ruled  surfaces  generated  by integral binormal  curves  in  Euclidean  3-space. Partial  Differ  Equ  Appl  2025:101298. https://doi.org/10.1016/j.padiff.2025.101298

 

  1. Baizeed H, Elsharkawy  A,  Cesarano  C,  Ramadan AA. Smarandache curves for the integral curves with the quasi frame in Euclidean 3-space.  Azerb  J  2025;15(2):219-239. https://doi.org/10.59849/2218-6816.2025.2.219
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing