AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025280122
REVIEW ARTICLE

Control strategies and power converter topologies for switched reluctance motors in electric vehicle applications: A comprehensive review

Muhammad Aamir Aman1 Wen-Jer Chang2* Muhammad Shamrooz Aslam3* Muhammad Salman1 Hazrat Bilal4
Show Less
1 School of Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
2 Department of Marine Engineering, College of Maritime Science and Management, National Taiwan Ocean University, Keelung, Taiwan
3 School of Computer Science and Artificial Intelligence, China University of Mining and Technology, Xuzhou, Jiangsu, China
4 School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
Received: 10 July 2025 | Revised: 11 August 2025 | Accepted: 14 August 2025 | Published online: 2 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Transportation electrification is a cornerstone in addressing climate change, primarily through the adoption of electric vehicles (EVs), which significantly reduce greenhouse gas emissions. Among various electric motor technologies, switched reluctance motors (SRMs) have emerged as promising alternatives due to their simple design, fault tolerance, and robustness. However, challenges such as torque ripple, high acoustic noise, and efficiency limitations hinder their widespread adoption. This paper presents a comprehensive review of contemporary SRM control strategies and associated power converters, aimed at improving the performance of EV applications. The study explores fundamental electromagnetic principles, highlights torque control strategies (e.g., indirect torque control, direct torque control, and artificial intelligence-based torque control), and evaluates their efficacy in minimizing torque ripple and optimizing motor performance. Additionally, the paper assesses various power converter topologies, emphasizing asymmetric half-bridge, novel integrated power converter, and T-type converters for their suitability in EV systems. Based on an extensive review, a four-phase SRM driven by a T-type converter, coupled with direct instantaneous torque control, is identified as the optimal configuration for EVs, providing a cost-effective, reliable, and high-performance solution for sustainable transportation.

Keywords
Switched reluctance motor
Electric vehicles
Torque ripples
Power converter topologies
Sustainable transportation
Funding
None.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References
  1. Salman M, Su H, Aman MA, Khan Y. Enhancing voltage profile and power loss reduction considering distributed generation (DG) resources. Eng Technol Appl Sci Res. 2022;12(4):8864-8871. http://dx.doi.org/10.48084/etasr.5046

 

  1. Haidar B, Vidal F, da Costa P, Lepoutre J. Assessment of 2021-2025-2030 CO2 standards on automakers’ portfolio vehicles’ segments. Presented at: International Colloquium of Gerpisa 2021 ;

 

  1. Bostanci E, Moallem M, Parsapour A, Fahimi B. Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study. IEEE Trans Transp Electrifi 2017;3(1):58-75.

 

  1. Ramesh P, Lenin N. High power density electrical machines for electric vehicles—comprehensive review based on material technology. IEEE Trans 2019;55(11):1-21.

 

  1. Chiba A, Kiyota K. Review of research and development of switched reluctance motor for hybrid electrical vehicle. In: Proceedings of the 2015 IEEE Workshop on Electrical Machines De- sign, Control and Diagnosis (WEMDCD). IEEE; 2015:127-131.

 

  1. Zeraoulia M, Benbouzid MEH, Diallo D. Electric motor drive selection issues for HEV propulsion systems: a comparative study. IEEE Trans Veh Technol. 2006;55(6):1756-1764.

 

  1. Bianchi N, Bolognani S, Carraro E, Castiello M, Fornasiero E. Electric vehicle traction based on synchronous reluctance motors. IEEE Trans Ind 2016;52(6):4762-4769.

 

  1. Kumar GV, Chuang CH, Lu MZ, Liaw CM. Development of an electric vehicle synchronous reluctance motor drive. IEEE Trans Veh Technol. 2020;69(5):5012-5024.

 

  1. Bilgin B, Jiang JW, Emadi A. Switched Reluctance Motor Drives: Fundamentals to Applica Boca Raton, FL: CRC Press; 2018.

 

  1. Kiyota K, Chiba A. Design of switched reluctance motor competitive to 60-kW IPMSM in third- generation hybrid electric vehicle. IEEE Trans Ind Appl. 2012;48(6):2303-2309.

 

  1. Petrus V, Pop A, Martis C, Gyselinck J, Iancu V. Design and comparison of different switched reluctance machine topologies for electric vehicle propulsion. In: Proceedings of the XIX International Conference on Electrical Machines (ICEM 2010). IEEE 2010:1-6.

 

  1. Ahn JW, Lukman GF. Switched reluctance motor: research trends and overview. CES Trans Electr Mach Syst. 2018;2(4):339-347.

 

  1. Akca H, Aktas A. Examination and experimental comparison of dc/dc buck converter topologies used in wireless electric vehicle charging ap- plications. Int J Optim Control: Theor Appl. 2024;14(2).

 

  1. Kiyota K, Kakishima T, Chiba A. Comparison of test result and design stage prediction of switched reluctance motor competitive with 60- kW rare-earth PM motor. IEEE Trans Ind Electron. 2014;61(10):5712-5721.

 

  1. Takeno M, Chiba A, Hoshi N, Ogasawara S, Take- moto M, Rahman MA. Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles. IEEE Trans Ind Appl. 2012;48(4):1327-1334.

 

  1. Fang G, Scalcon FP, Xiao D, Vieira RP, Gru¨ndling HA, Emadi A. Advanced control of switched reluctance motors (SRMs): a review on current regulation, torque control, and vibration suppression. IEEE Open J Ind Electron Soc. 2021;2:280-301.

 

  1. Sreeram K, Preetha PK, Rodr´ıguez-Garc´ıa J, A´lvarez-Bel C. A comprehensive review of torque and speed control strategies for switched reluctance motor drives . CES Trans Electr Mach Syst.

 

  1. Mercorelli P. Control of permanent magnet synchronous motors for track applications. Electron- ics. 2023;12(15):3285.

 

  1. Diao K, Sun X, Bramerdorfer G, Cai Y, Lei G, Chen L. Design optimization of switched reluctance machines for performance and reliability enhancements: a review. Renew Sustain Energy Rev. 2022;168:112785.

 

  1. Velmurugan G, Bozhko S, Yang T. A review of torque ripple minimization techniques in switched reluctance machine. In: 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). IEEE; 2018:1-6.

 

  1. Wang Z, Ching TW, Huang S, Wang H, Xu T. Challenges faced by electric vehicle motors and their solutions. IEEE Access. 2020;9:5228-5249.

 

  1. Sahu AK, Emadi A, Bilgin B. Noise and vibration in switched reluctance motors: a review on structural materials, vibration dampers, acoustic impedance, and noise masking methods. IEEE Access. 2023;11:27702-27718.

 

  1. Mohanraj D, Gopalakrishnan J, Chokkalingam B, Mihet-Popa L. Critical aspects of electric motor drive controllers and mitigation of torque ripple. IEEE Access. 2022;10:73635-73674.

 

  1. L´opez I, Ibarra E, Matallana A, Andreu J, Kortabarria I. Next generation electric drives for HEV/EV propulsion systems: technology, trends, and challenges. Renew Sustain Energy 2019;114:109336.

 

  1. Peng F, Ye J, Emadi A, Huang Y. Position sensorless control of switched reluctance motor drives based on numerical method. IEEE Trans Ind 2017;53(3):2159-2168.

 

  1. Chau KT. Electric Vehicle Machines and Drives: Design, Analysis and Application. Hoboken, NJ: John Wiley & Sons; 2015.

 

  1. Li H, Bilgin B, Emadi A. An improved torque sharing function for torque ripple reduction in switched reluctance machines. IEEE Trans Power Electron. 2018;34(2):1635-1644.

 

  1. Gnanavadivel J, Senthil Kumar N, Yogalakshmi P. Comparative study of PI, fuzzy, and fuzzy tuned PI controllers for single-phase AC- DC three-level converter. J Electr Eng Technol. 2017;12(1):78-90.

 

  1. Xu A, Shang C, Chen J, Zhu J, Han L. A new control method based on DTC and MPC to reduce torque ripple in SRM. IEEE Access. 2019;7:68584- 68593.

 

  1. Ronanki D, Pittam KR, Dekka A, Perumal P, Beig AR. Phase current reconstruction method with an improved direct torque control of SRM drive for electric transportation applications. IEEE Trans Ind Appl. 2022;58(6):7648-7657.

 

  1. Yan N, Cao X, Deng Z. Direct torque control for switched reluctance motor to obtain high torque–ampere ratio. IEEE Trans Ind Electron. 2018;66(7):5144-5152.

 

  1. Sun X, Xiong Y, Yao M, Tang X. A hybrid control strategy for multimode switched reluctance motors. IEEE/ASME Trans Mechatronics. 2022;27(6):5605-5614.

 

  1. De Paula MV, Williamson SS, dos Santos Barros TA. Four-quadrant model following sliding mode cruise control for SRM with DITC applied to transportation electrification. IEEE Trans Transp 2022;8(3):3090-3099.

 

  1. Klein-Hessling A, Hofmann A, De Doncker RW. Direct instantaneous torque and force control: a control approach for switched reluctance ma- chines. IET Electr Power Appl. 2017;11(5):935-

 

  1. Reddy PK, Ronanki D, Perumal P. Efficiency improvement and torque ripple minimisation of four- phase switched reluctance motor drive using new direct torque control strategy. IET Electr Power 2020;14(1):52-61.

 

  1. Thirumalasetty M,  Narayanan  High- performance torque controller for switched reluctance machine. IEEE Trans Ind Appl. 2024.

 

  1. Shahbazi R, Saghaiannezhad SM, Rashidi A. A new converter based on DITC for improving torque ripple and power factor in SRM drives. In: 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). IEEE; 2020:1-5.

 

  1. Husain T, Elrayyah A, Sozer Y, Husain I. Unified control for switched reluctance motors for wide speed operation. IEEE Trans Ind Electron. 2018;66(5):3401-3411.

 

  1. Yao S, Zhang W. A simple strategy for parameters identification of SRM direct instantaneous torque control. IEEE Trans Power Electron. 2017;33(4):3622-3630.

 

  1. Sun X, Feng L, Diao K, Yang Z. An im- proved direct instantaneous torque control based on adaptive terminal sliding mode for a segmented-rotor SRM. IEEE Trans Ind Electron. 2020;68(11):10569-10579.

 

  1. Sun Q, Wu J, Gan C. Optimized direct instantaneous torque control for SRMs with efficiency improvement. IEEE Trans Ind Electron. 2020;68(3):2072-2082.

 

  1. Ge L, Zhong J, Cheng Q, Fan Z, Song S, De Doncker RW. Model predictive control of switched reluctance machines for suppressing torque and source current ripples under bus voltage fluctuation. IEEE Trans Ind Electron. 2022;70(11):11013-11021.

 

  1. Ge L, Fan Z, Du N, Huang J, Xiao D, Song S. Model predictive torque and force control for switched reluctance machines based on online optimal sharing function. IEEE Trans Power Electron.

 

  1. Senthil Murugan L, Maruthupandi P. Sensorless speed control of 6/4-pole switched reluctance motor with ANFIS and fuzzy-PID-based hybrid observer. Electr Eng. 2020;102:831-844.

 

  1. Liang J, Parsapour A, Moallem M, Fahimi B, Kiani M. Torque profile optimization in switched reluctance motor. In: 2019 IEEE 28th Inter- national Symposium on Industrial Electronics (ISIE). IEEE 2019:414-419.

 

  1. Torres J, Blanco M, Lafoz M, Navarro G, N´ajera J, Santos-Herr´an M. Dimensioning methodology of energy storage systems for power smoothing in a wave energy conversion plant considering efficiency maps and filtering control techniques. 2020;13(13):3380.

 

  1. Sasidharan S, Isha T. Geometric modification of a switched reluctance motor for minimization of torque ripple using finite element analysis for electric vehicle application. J Eng Sci Technol Rev. 2019;12(2).

 

  1. Dom´ınguez-Navarro JA, Artal-Sevil J, Pascual H, Bernal-Agust´ın JL. Fuzzy-logic strategy control for switched reluctance machine. In: 2018 Thir- teenth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE 2018:1-5.

 

  1. Yang C, Song S, Yang Q, Cheng Q, Bao C, Gao H. Torque ripple suppression strategy of switched reluctance machine based on phase current harmonic optimization. In: 2023 26th International Conference on Electrical Machines and Systems (ICEMS). IEEE 2023:1-6.

 

  1. Ishikawa H, Imai T, Naitoh H. New drive circuit for reducing the switching current ripples in switched reluctance motors. Electr Eng Jpn. 2018;203(2):47-57.

 

  1. Rajendran A, Karthik B. Design and analysis of fuzzy and PI controllers for switched reluctance motor drive. Mater Today Proc. 2021;37:1608- 1612.

 

  1. Jing B, Dang X, Liu Z, Long S. Torque ripple suppression of switched reluctance motor based on fuzzy indirect instant torque control. IEEE Ac- cess. 2022;10:75472-75481.

 

  1. Pushparajesh V, Nandish B, Marulasiddappa H. Hybrid intelligent controller-based torque ripple minimization in switched reluctance motor drive. Bull Electr Eng Inform. 2021;10(3):1193-1203.

 

  1. Dudak AT, Bakan AF. A digital iterative learning based peak current mode control for interleaved totem pole PFC circuit. 2024;17(20):5026.

 

  1. Li K, Long Y, Wang H, Wang Y-F. Modeling and sensitivity analysis of concrete creep with machine learning methods. J Mater Civ Eng. 2021;33(8):04021206.

 

  1. Mehta S. Design, modeling, and control of doubly salient reluctance machines [doctoral dissertation]. Raleigh, NC: North Carolina State University; 2020.

 

  1. Karaboga D, Kaya E. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev. 2019;52:2263-2293.

 

  1. Pushparajesh V, Balamurugan M, Ramaiah NS. Artificial neural network based direct torque control of four phase switched reluctance motor. Published online 2019.

 

  1. Pires VF, Cordeiro A, Foito D, Pires AJ, Mar- tins J, Chen H. A multilevel fault-tolerant power converter for a switched reluctance machine drive. IEEE Access. 2020;8:21917-21931.

 

  1. Xiao D, Rotilli Filho S, Fang G, Ye J, Emadi A. Position-sensorless control of switched reluctance motor drives: a review. IEEE Trans Transp Electrification. 2021;8(1):1209-1227.

 

  1. Wang JJ. Adaptive inverse position control of switched reluctance motor. Appl Soft Comput. 2017;60:48-59.

 

  1. Cai Y, Wang Y, Xu H, Sun S, Wang C, Sun L. Re- search on rotor position model for switched reluctance motor using neural network. IEEE/ASME Trans Mechatronics. 2018;23(6):2762-2773.

 

  1. Hosseinzadeh Soreshjani M, Arab Markadeh G, Daryabeigi E, Abjadi NR, Kargar A. Application of brain emotional learning-based intelligent controller to power flow control with thyristor- controlled series capacitance. IET Gener Transm 2015;9(14):1964-1976.

 

  1. Song S, Xia Z, Zhang Z, Liu W. Control performance analysis and improvement of a modular power converter for three-phase SRM with Y- connected windings and neutral line. IEEE Trans Ind Electron. 2016;63(10):6020-6030.

 

  1. Scalcon FP, Fang G, Vieira RP, Gru¨ndling HA, Emadi A. Discrete-time super-twisting sliding mode current controller with fixed switching frequency for switched reluctance motors. IEEE Trans Power Electron. 2021;37(3):3321-3333.

 

  1. Sial MR, Sahoo NCS. Comparative performance analysis of hysteresis and PI current controller for torque control of switched reluctance motor. In: 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). 2020:1-6.

 

  1. Zhang X, Yang Q, Ma M, Lin Z, Yang S. A switched reluctance motor torque ripple reduction strategy with deadbeat current control and active thermal management. IEEE Trans Veh Technol. 2019;69(1):317-327.

 

  1. Li A, Jiang D, Sun J, Liu Z, Lee CH. Unified vector torque control for reluctance motor with different coil pitch. IEEE Trans Ind Electron. 2022;70(6):5527-5536.

 

  1. Reis RRC, Kimpara MLM, Galotto L, Pinto JOP. Genetic algorithm-based commutation angle control for torque ripple mitigation in switched reluctance motor drives. IEEE Access. 2023;11:97331- 97339.

 

  1. Dhale S, Nahid-Mobarakeh B, Emadi A. A review of fixed switching frequency current control tech- niques for switched reluctance machines. IEEE Access. 2021;9:39375-39391.

 

  1. Saleh AL, Al-Amyal F, Sz´amel L. Control techniques of switched reluctance motors in electric vehicle applications: a review on torque ripple reduction strategies. AIMS Electron Electr Eng. 2024;8(1):104-145.

 

  1. G¨otz GT. Bidirectional DC-to-DC converter with integrated switched reluctance generator [doc- toral dissertation]. Aachen: Rheinisch-Westf¨alis- che Technische Hochschule Aachen; 2024.

 

  1. Abdel-Aziz A, Elgenedy M, Williams B. Re- view of switched reluctance motor converters and torque ripple minimisation techniques for electric vehicle applications. 2024;17(13):3263.

 

  1. Chen Y, Xu D. Review of soft-switching topologies for single-phase photovoltaic inverters. IEEE Trans Power Electron. 2021;37(2):1926-1944.

 

  1. Gaafar MA, Abdelmaksoud A, Orabi M, Chen H, Dardeer M. Switched reluctance motor converters for electric vehicle applications: comparative review. IEEE Trans Transp Electrification. 2022;8(4).

 

  1. Lee H, Smet V, Tummala R. A review of SiC power module packaging technologies: challenges, advances, and emerging issues. IEEE J Emerg Sel Top Power Electron. 2019;8(1):239-255.

 

  1. Hadke VV, Thakre MP. Integrated multilevel converter topology for speed control of SRM drive in plug-in hybrid electric vehicle. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). 2019:1013-1018.

 

  1. Abdel-Fadil R, Sz´amel L. State of the art of switched reluctance motor drives and control techniques. In: 2018 Twentieth International Middle East Power Systems Conference (MEP-CON). 2018:779-784.

 

  1. Deepak M, Janaki G, Bharatiraja C. Power electronic converter topologies for switched reluctance motor towards torque ripple analysis. Mater Today Proc. 2022;52:1657-1665.

 

  1. Damarla I, Vadlamudi B, Mahendran V, Rao KD. Analysis of torque ripple investigation on three- phase SR motor drive for EV applications. Int J Circuit Theory Appl. 2024;52.

 

  1. Yamada N, Hoshi N. Experimental verification on a switched reluctance motor driven by asymmetric flying capacitor multilevel H-bridge inverter. In: 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). 2017:971-976.

 

  1. Afonso JL, Ferreira J, Monteiro V, Pinto JG, Couto C. A review on power electronics technologies for electric mobility. 2020;13(23):6343.

 

  1. Ahmad SS, Urabinahatti C, Prasad KN, Narayanan G. High-switching-frequency SiC power converter for high-speed switched reluctance machine. IEEE Trans Ind Appl. 2021;57(6):6069-6082.

 

  1. Han G, Chen H. Improved power converter of SRM drive for electric vehicle with self-balanced capacitor voltages. IEEE Trans Transp Electrification. 2020;7(3):1339-1348.

 

  1. Patel MA, Singh K, Sharma R, et al. Design and optimisation of slotted stator tooth switched re- luctance motor for torque enhancement for electric vehicle applications. Int J Ambient Energy. 2022;43(1):4283-4288.

 

  1. Xu S, Chen H, Yang J, Dong F. Performance evaluation and reliability enhancement of switched reluctance drive system by a novel integrated power converter. IEEE Trans Power Electron. 2019;34(11):11090-11102.

 

  1. Pires VF, Cordeiro A, Pires A, Martins J, Chen H. A multilevel topology based on the T-type converter for SRM drives. In: 2018 16th Biennial Baltic Electronics Conference (BEC). 2018:1-4.

 

  1. Gaafar MA, Abdelmaksoud A, Orabi M, Chen H, Dardeer M. Performance investigation of switched reluctance motor driven by Quasi-Z-source integrated multiport converter with different switching algorithms. 2021;13(17):9517.

 

  1. Ding W, Yang S, Hu Y. Performance improvement for segmented-stator hybrid-excitation SRM drives using an improved asymmetric half- bridge converter. IEEE Trans Ind Electron. 2018;66(2):898-909.

 

  1. Perin D, Karaoglan AD, Yilmaz K. Rotor design optimization of a 4000 rpm permanent mag- net synchronous generator using moth flame optimization algorithm. Int J Optim Control Theor Appl. 2024;14(2):123-133. http://dx.doi.org/10.11121/ijocta.2024.14.211

 

  1. U¸cak K, Arslantu¨rk BN. Adaptive MIMO fuzzy PID controller based on peak observer. Int J Optim Control Theor Appl. 2023;13(2). http://dx.doi.org/10.11121/ijocta.2023.13.211

 

  1. Calgan H. Optimal C-type filter design for wireless power transfer system by using support vector machines. Int J Optim Control Theor Appl. 2023;13(2):151-160. http://dx.doi.org/10.11121/ijocta.2023.13.208

 

  1. Demirtas M, Ahmad F. Fractional fuzzy PI controller using particle swarm optimization to im- prove power factor by boost converter. Int J Optim Control Theor Appl. 2023;13(2):205-213. http://dx.doi.org/10.11121/ijocta.2023.13.214

 

  1. Aman MA, Ren XC, Tareen WUK, et al. Optimal siting of distributed generation unit in power distribution system considering voltage profile and power losses. Math Probl Eng. 2022;2022:5638407. http://dx.doi.org/10.1155/2022/5638407
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing