FastLoader: Leveraging large language models to accelerate cargo loading optimization with numerous loading constraints

With the unquestionable commercial success of air cargo transportation, cargo loading is a crucial step that selects the optimal placement solution for a given aircraft hold and a set of cargoes. This combinatorial optimization promotes airlines’ revenue (e.g., minimizing fuel consumption) with the encoded constraints in the solution space. In practical scenarios, cargo loading includes dozens of loading constraints (e.g., isolation of dangerous cargoes). However, existing techniques either over-simplify such constraints due to the expensive manual modeling in combinatorial optimization, or suffer from a time-consuming optimization process due to the large search space in heuristic search. In this paper, we present FastLoader, an optimization acceleration approach that employs large language models (LLMs) to distinguish critical structural patterns in the simulated cargo loading data while still scaling to numerous loading constraints in real scenarios. FastLoader’s key design features are the following: (i) a cargo loading constructor, which converts the information of both cargo types and loading constraints into pre-defined data structures, thus avoiding manual modeling and improving solution accuracy; (ii) a cargo loading solver and a search space reducer, which work together to effectively reduce search space and accelerate the optimization process. We evaluate the proposed approach using a list of practical scenarios from industry transportation systems, and the results show the followin: FastLoader improves accuracy by 10% compared to combinatorial optimization, and reduces the optimization time by 90% with 1.5% accuracy losses compared to heuristic search.
- Karunathilake AN, Fernando A. Identifying the key influencing factors for the growth of air cargo demand. J Glob Oper Strateg Sourc. 2024;17(2):368-383.
- Nath P, Upadhyay RK. Reformation and optimization of cargo handling operation at Indian air cargo terminals. J Air Transp Res Soc. 2024;2:100022.
- Du Y, Chen F, Fan X, Zhang L, Liang H. Re- search on cargo-loading optimization based on genetic and fuzzy integration. J Intell Fuzzy Syst. 2021;40(4):8493-8500.
- Brandt F, Nickel S. The air cargo load planning problem: a consolidated problem definition and literature review on related problems. Eur J Oper Res. 2019;275(2):399-410.
- Mesquita AC, Sanches CA. Air cargo load and route planning in pickup and delivery operations. Expert Syst Appl. 2024;249:123711.
- Zhao X, Dong Y, Zuo L. A combinatorial optimization approach for air cargo palletization and aircraft loading. 2023;11(13):2798.
- Gajda M, Trivella A, Mansini R, Pisinger D. An optimization approach for a complex real- life container loading problem. Omega (Oxford). 2022;107:102559.
- Dahmani N, Krichen S. On solving the bi- objective aircraft cargo loading problem. In: Proc ICMSAO 2013. IEEE; 2013:1-6.
- Dahmani N, Krichen S. Solving a load balancing problem with a multi-objective particle swarm optimisation approach: application to aircraft cargo transportation. Int J Oper Res. 2016;27(1-2):62-
- Chenguang Y, Hu L, Yuan G. Load planning of transport aircraft based on hybrid genetic algorithm. In: Proc MATEC 2018. Vol 179. EDP Sciences; 2018:01007.
- Zhu L, Wu Y, Smith H, Luo J. Optimisation of containerised air cargo forwarding plans considering a hub consolidation process with cargo load J Oper Res Soc. 2023;74(3):777-796.
- Bi X, Chen D, Chen G, et al. Deepseek LLM: scaling open-source language models with long termism. arXiv preprint arXiv:2401.02954. Published 2024.
- Achiam J, Adler S, Agarwal S, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774. Published 2023.
- Zhang S, Roller S, Goyal N, et al. OPT: open pre-trained transformer language models. arXiv preprint arXiv:2205.01068. Published 2022.
- Naveed H, Khan AU, Qiu S, et al. A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435. Published 2023.
- Chang Y, Wang X, Wang J, et al. A survey on evaluation of large language models. ACM Trans Intell Syst Technol. 2024;15(3):1-45.
- Huang S, Yang K, Qi S, Wang R. When large language model meets optimization. Swarm Evol 2024;90:101663.
- Yang C, Wang X, Lu Y, et al. Large language models as optimizers. arXiv preprint arXiv:2309.03409. Published 2023.
- Kaluzny BL, Shaw RD. Optimal aircraft load balancing. Int Trans Oper Res. 2009;16(6):767-787.
- Macalintal JMV, Ubando AT. Optimal air- craft payload weight and balance using fuzzy linear programming model. Chem Eng Trans. 2023;103:613-618.
- Zhao X, Yuan Y, Dong Y, Zhao R. Optimization approach to the aircraft weight and balance problem with the centre of gravity envelope constraints. IET Intell Transp Syst. 2021;15(10):1269-1286.
- Mongeau M, Bes C. Optimization of aircraft container loading. IEEE Trans Aerosp Electron Syst. 2003;39(1):140-150.
- Agbas E, Kusakci AO. A simulation approach for aircraft cargo loading considering weight and balance constraints. Int J Bus Ecosyst Strateg. 2021;3(1):21-31.
- Vancroonenburg W, Verstichel J, Tavernier K, Vanden Berghe G. Automatic air cargo selection and weight balancing: a mixed integer programming approach. Transp Res E Logist Transp Rev. 2014;65:70-83.
- Limbourg S, Schyns M, Laporte G. Automatic aircraft cargo load planning. J Oper Res Soc. 2012;63(9):1271-1283.
- Traversa Aircraft loading optimization: memcomputing the 5th Airbus problem. arXiv preprint arXiv:1903.08189. Published 2019.
- Yan S, Shih YL, Shiao FY. Optimal cargo container loading plans under stochastic demands for air express carriers. Transp Res E Logist Transp 2008;44(3):555-575.
- Lurkin V, Schyns M. The airline container loading problem with pickup and delivery. Eur J Oper 2015;244(3):955-965.
- Totamane R, Dasgupta A, Rao S. Air cargo demand modeling and prediction. IEEE Syst J. 2012;8(1):52-62.
- Nayak V, Sahu V. Quantum approach to optimize aircraft cargo loading. In: Proc Int Conf Trends Quantum Comput Emerg Bus Technol (TQCEBT). IEEE; 2022:1-6.
- Shunzhi Z, Wenxing H. An improved optimization algorithm for the container loading problem. In: Proc WRI 2009. Vol 2. IEEE; 2009:46-49.
- Sahun Y, Sikirda Y, Tymochko O. Application of computer load optimization model in an air- craft load planning process. In: Encyclopedia of Information Science and Technology, Sixth Edi IGI Global; 2025:1-20.
- Heidelberg KR, Parnell GS, Ames JE IV. Automated air load planning. Nav Res Logist. 1998;45(8):751-768.
- Yan S, Lo CT, Shih YL. Cargo container loading plan model and solution method for international air express carriers. Transp Plan Technol. 2006;29(6):445-470.
- Wong EY, Mo DY, So S. Closed-loop digital twin system for air cargo load planning operations. Int J Comput Integr Manuf. 2021;34(7-8):801-813.
- Hao Z, Du Q. Civil aircraft stowage based on genetic algorithm. China Sci Pap. 2021;16(8).
- Yu Q, Qu S, Peng Z, Ji Y. The robust maximum expert consensus model considering satisfaction preference. J Ind Manag Optim. 2025;21(3):2416- 2455.
- Zhu K, Qu S, Ji Y, Ma Y. Distributionally robust chance constrained maximum expert consensus model with incomplete information on uncertain cost. Group Decis Negot. 2024:1-41.
- Guo D, Yang D, Zhang H, Song J, Zhang R, Xu R, Zhu Q, Ma S, Wang P, Bi X, et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948. Published 2025.
- Touvron H, Martin L, Stone K, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288. Published 2023.
- Abdin M, Aneja J, Awadalla H, et al. Phi-3 technical report: a highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219. Published 2024.
- Bai J, Bai S, Chu Y, et al. Qwen technical report. arXiv preprint arXiv:2309.16609. Published 2023.
- Yang A, Li A, Yang B, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388. Published 2025.
- Tseremoglou I, Bombelli A, Santos BF. A combined forecasting and packing model for air cargo loading: a risk-averse framework. Transp Res E Logist Transp Rev. 2022;158:102579.