AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025120054
RESEARCH ARTICLE

Application of Jumarie-Stancu Collocation Series Method and Multi-Step Generalized Differential Transform Method to fractional glucose-insulin

Sayed Saber1,2* Brahim Dridi3 Abdullah Alahmari3 Mohammed Messaoudi4
Show Less
1 Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
2 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt
3 Department of Mathematics, Faculty of Sciences, Umm Al-Qura University, Saudi Arabia
4 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
Received: 19 March 2025 | Revised: 24 April 2025 | Accepted: 29 April 2025 | Published online: 20 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study applies the Multi-Step Generalized Differential Transform Method (MSGDTM) and the Jumarie-Stancu Collocation Series Method (JSCSM) to analyze a fractional-order Model (1). The model incorporates Caputo fractional derivatives to capture the nonlocal and memory-dependent characteristics of glucose-insulin interactions, considering physiological factors such as β- cell activity and external glucose intake. Stability analysis reveals bifurcations and chaotic attractors, demonstrating the system’s sensitivity to fractional orders. Numerical simulations compare MSGDTM and JSCSM accuracy and efficiency, highlighting MSGDTM’s superior convergence and lower approximation error. The results show that fractional-order modeling provides a more accurate framework for understanding glucose-insulin dynamics and predicting metabolic behavior. Furthermore, control mechanisms are introduced to mitigate chaos, offering potential strategies for managing diabetes. This work emphasizes the robustness of MSGDTM in solving complex fractional biological models. It provides insights into fractional calculus applications in biomedical research.

Keywords
Fractional calculus
Glucose-insulin model
Numerical methods
Chaos control
Numerical simulation
MSGDTM
JSCSM
Funding
This research work was funded by Umm Al-Qura University, Saudi Arabia, under Grant No. 25UQU4340608GSSR02.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Zabidi NA, Majid ZA, Kilicman A, et al. Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict–correct technique. Adv Cont Discr 2022;2022:1-23.

 

  1. Podlubny I. Fractional Differential Equations. San Diego: Academic Press; 1999.

 

  1. Arena P, Caponetto R, Fortuna L, and Porto M. Nonlinear Noninteger Order Circuits and Systems– An Introduction. Singapore: World Scientific;

 

  1. Nisar KS, Farman M, Abdel-Aty, Ravichandran C. A review of fractional-order models for plant epidemiology. Prog Fract Differ Appl. 2024;10:489-521.

 

  1. Ahmed E, Elgazzar AS. On fractional order differential equations model for nonlocal epidemics. Physica A. 2007;379(2):607-614.

 

  1. Li W, Wang Y, Cao J, Abdel-Aty M. Dynamics and backward bifurcations of SEI tuberculosis models in homogeneous and heterogeneous popu J Math Anal Appl. 2025;543:128924.

 

  1. Nisar KS, Farman M, Abdel-Aty M, Ravichandran C. A review of fractional order epidemic models for life sciences problems: past, present and future. Alexandria Eng J. 2024;95:283-305.

 

  1. Bagley RL, Calico RA. Fractional order state equations for the control of viscoelastically damped structures. J Guid Control Dyn. 1991; 14:304-311.

 

  1. Heaviside O. Electromagnetic Theory. New York: Chelsea Publishing Company; 1971.

 

  1. Kusnezov D, Bulgac A, Dang GD. Quantum L´evy processes and fractional kinetics. Phys Rev Lett. 1999;82:1136-1139.

 

  1. Almutairi N, Saber S. Existence of chaos and the approximate solution of the Lorenz–Lu¨–Chen system with the Caputo fractional operator. AIP Adv. 2024;14:015112.

 

  1. Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific; 2000:87- 130.

 

  1. Saber S. Control of chaos in the Burke-Shaw system of fractal-fractional order in the sense of Caputo-Fabrizio. J Appl Math Comput Mech. 2024;23(1):83-96.

 

  1. Ahmed K, Adam H, Almutairi N, Saber S. Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients. Results Phys. 2024;56:107311.

 

  1. Almutairi N, Saber S. On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives. Sci Rep. 2023;13:22726.

 

  1. Almutairi N, Saber S, and Ahmad H. The fractal- fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses. AIMS Math. 2023;8(12):29382-29410.

 

  1. Almutairi N, Saber S. Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Math. 2023;8(11):25863-25887.

 

  1. Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Springer; 2011.

 

  1. Ahmed KIA, Adam HDS, Almutairi N, et al. Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients. Results Phys. 2024;56:107311.

 

  1. Alhazmi M, Dawalbait F, Aljohani A, et al. Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator. Thermal  2024;28(6B):5161- 5168.

 

  1. Almutairi N, Saber S. Chaos control and numerical solution of time-varying fractional Newton- Leipnik system using fractional Atangana- Baleanu derivatives. AIMS Math. 2023;8:25863-

 

  1. Alsulami A, Alharb RA, Albbogami TM, et al. Controlled chaos of a fractal–fractional Newton- Leipnik system. Thermal Sci. 2024;28(6B).

 

  1. Alshehri MH, Saber S, and Duraihem FZ. Dynamical analysis of fractional-order of IVGTT glucose–insulin interaction. Int J Nonlin Sci Nu- mer Simul. 2023;24:1123-1140.

 

  1. Alshehri MH, Duraihem FZ, Alalyani A, et al. A caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data. J Taibah Univ Sci. 2021;15:26-36.

 

  1. Sayed Saber, Eihab Bashier, Alzahrani S., Noa- man IA. A mathematical model of glucose-insulin interaction with time delay. Appl Comput Math. 2018;7(3):1-5.

 

  1. Ahmed KIA, Adam HDS, Yousiff MY, et al. Different strategies for diabetes by mathematical modeling: applications of fractal-fractional derivatives in the sense of Atangana-Baleanu. Results Phys. 2023;26: 106892.

 

  1. Ahmed KIA, Adam HDS, Yousiff MY, et al. Different strategies for diabetes by mathematical modeling: modified minimal model. Alexandria Eng J. 2023;80:74-87.

 

  1. Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech. 2002;35(7): 911–917.

 

  1. Mukhopadhyay A, DeGaetano A, Arino O. Modeling the intravenous glucose tolerance test: a global study for a single-distributed-delay model. Discrete Contin Dyn Syst Ser B. 2004;228(4):407- 417.

 

  1. Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Dia- betes. 1997;46(9):1375-1380.

 

  1. Dalla Man C, Caumo A, Basu R, Rizza R, Toffolo G, and Cobelli C. Minimal model estimation of glucose absorption and insulin sensitivity from oral test: Validation with a tracer method. Am J Physiol Endocrinol Metab. 2004;287(4):E637- E643.

 

  1. Ahmed KIA, Mirgani SM, Seadawy A, et al. A comprehensive investigation of fractional glucose- insulin dynamics: existence, stability, and numerical comparisons using residual power series and generalized Runge–Kutta methods. J Taibah Univ Sci. 2025;19(1):1-15.

 

  1. Naik PA, Yeolekar BM, Qureshi S, et al. Global analysis of a fractional-Order hepatitis B virus model under immune response in the presence of cytokines. Adv Theory Simul. 2024;7:2400726.

 

  1. Saber S, Alalyani A. Stability analysis and numerical simulations of IVGTT glucose-insulin interaction models with two time delays. Math Model Anal. 2022;27:383-407.

 

  1. Haroon DS, Mohammed A, Safa MM, et al. An application of Newton’s interpolation polynomials to the zoonotic disease transmission between hu- mans and baboons system based on a time-fractal fractional derivative with a power-law kernel. AIP Adv. 2025;15(4):045217.

 

  1. Danca MF. Lyapunov exponents of a discontinuous 4D hyperchaotic system of integer or fractional order. Entropy. 2018;20(5):337.

 

  1. Zhuang P, Liu F, Anh V, and Turner I. Numerical methods  for  the  variable-order fractional advection-diffusion equation with a non- linear  source    SIAM  J  Numer  Anal, 2009;47(3):1760-1781.

 

  1. Almutairi N, Saber S. Application of a time- fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton’s interpolation polynomials. MethodsX. 2024;12:102510.

 

  1. G´omez-Aguilar JF. Chaos in a nonlinear Bloch system with Atangana–Baleanu fractional derivatives. Numer Methods Partial Differ Equ. 2018;34(5):1716-1738.

 

  1. Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Ther- mal Sci. 2016;20:763-769.

 

  1. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015;1:73-85.

 

  1. Nosrati K, Volos C. Bifurcation analysis and chaotic behaviors of fractional-order singular biological systems. In: Pham VT, Vaidyanathan S, Volos C, Kapitaniak T, eds.Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors Studies in Systems, Decision and Control, vol. 133. Cham:Springer; 2018.

 

  1. Odibat ZM, Momani S. Modified homotopy perturbation method:  application  to quadratic Riccati differential equation of fractional order.  Chaos Solitons Fractals. 2008;36:167- 174.

 

  1. Tsai P, Chen CK. An approximate analytic solution of the nonlinear Riccati differential equation. J Franklin Inst. 2010;347: 1850-1862.

 

  1. Zeng DQ, Qin YM. The Laplace-Adomian-Pad´e technique for the seepage flows with the Rie- mann–Liouville derivatives. Commun Fract Calc. 2012;3:26-29.

 

  1. Khan Y, Dibl´ık J, Faraz N, Smarda Z. An efficient new perturbative Laplace method for space-time fractional telegraph equations. Adv Differ Equ., 2012;2012:204.

 

  1. Khan NA, Ara A, Khan NA. Fractional-order Riccati differential equation: analytical approximation and numerical results. Adv Differ Equ., 2013;2013:185.

 

  1. Odibat Z, Momani S. An algorithm for the numerical solution of differential equations of fractional J Appl Math Inform. 2008;26:15-27.

 

  1. Kataria KK, Vellaisamy P. Saigo space–time fractional Poisson process via Adomian decomposition method. Stat Probab Lett. 2017;129:69- 80

 

  1. Haq F, Shah K, Rahman GU, Shahzad M. Numerical solution of fractional-order smoking model via Laplace-Adomian decomposition Alexandria Eng J. 2018;57:1061-1069.

 

  1. Sirisubtawee S, Kaewta S. New modified Adomian decomposition recursion schemes for solving certain types of nonlinear fractional two-point boundary value problems. Int J Math Math Sci. 2017;2017:1–20.

 

  1. Liu Q, Liu J, Chen Y. Asymptotic limit cycle of fractional Van der Pol oscillator by homotopy analysis method and memory-free principle. Appl Math Model. 2016;40(4): 3211-3220.

 

  1. Freihat A, Momani S. Application of multistep generalized   differential transform method for the solutions of the fractional- order Chua’s system. Discrete Dyn Nat Soc. 2012;2012:1–13.

 

  1. Wang H, Yang D, Zhu S. A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput Methods Appl. Mech Eng. 2015;290:45-56.

 

  1. Song H, Yi M, Huang J, Pan Y. Numerical solution of fractional partial differential equations by using Legendre wavelets. Eng Lett. 2016;24(3):358-364.

 

  1. Lu H, Bates PW, Chen W, Zhang M. The spectral collocation method for efficiently solving PDEs with fractional Laplacian. Adv Comput Math. 2017;44(6):861–878.

 

  1. Odibat Z, Momani S, Erturk VS. Generalized differential transform method: Application to differential equations of fractional order. Appl Math Comput. 2008;197(2):467-477.

 

  1. Momani S, Odibat Z. A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor’s formula. J Comput Appl Math. 2008;220(1–2):85-95.

 

  1. Odibat Z, Momani S. A generalized differential transform method for linear partial differential equations of fractional order. Appl Math Lett. 2008;21(2):194-199.

 

  1. Erturk VS,  Momani  S,  Odibat  Application  of  generalized  differential transform method to multi-order fractional differential equations. Commun Nonlinear Sci Numer Simulat. 2008;13(8):1642-1654.

 

  1. Odibat ZM,  Bertelle  C,  Aziz-Alaoui MA, Duchamp GHE. A multi-step differential transform method and application to non-chaotic or chaotic systems.  Comput   Math Appl. 2010;59(4):1462-1472.

 

  1. Ertu¨rk VS,  Odibat  ZM,  Momani    An  approximate solution of a fractional order differential  equation  model  of  human  T-cell  lymphotropic virus I (HTLV-I) infection of CD4 4+T- cells. Comput E Mathem Appl 2011;62(3):996- 1002.

 

  1. Odibat ZM,  Bertelle  C,  Aziz-Alaoui MA, Duchamp GHE. A multistep differential trans- form method and application to non-chaotic or chaotic systems. Comput Mathemat Appl. 2010;59(4):1462-1472.

 

  1. Erturk VS, Odibat ZM, Momani S. An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4 T-cells. Com- put Math Appl. 2011;62(3):996– 1002.

 

  1. Asad Freihat A, Momani S. Application of multi- step generalized differential transform method for the solutions of the fractional-order chua’s system. Discrete Dyn Nat Soc. 2012; 2012:427393.

 

  1. Liu C-S. Counterexamples on Jumarie’s three basic fractional  calculus  formulae  for non- differentiable continuous functions. Chaos Solit Fract. 2018;109:219-222.

 

  1. Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order. Appl Math Comput. 2008;197(2):467–477.

 

  1. Joshi H, Yavuz M, Taylan O, Alkabaa A. Dynamic analysis of fractal-fractional cancer model under chemotherapy drug with generalized Mittag-Leffler kernel. Comput Methods Programs Biomed. 2025;260:108565.

 

  1. Gundogdu H, Joshi H. Numerical analysis of time- fractional cancer models with different types of net killing rate. Mathemat. 2025; 13:536.

 

  1. Hardik J. Mechanistic insights of COVID-19 dynamics by considering the influence of neurodegeneration and memory trace. Physica Scrip. 2024;99(3):35254.

 

  1. Joshi H, Jha BK. Generalized diffusion characteristics of Calcium model with concentration and memory of cells: a spatiotemporal approach. Iran J Sci Technol Trans Sci. 2022;46:309–322.

 

  1. Yavuz M, Mur R, Yildiz M, Joshi H. Mathematical modeling of middle east respiratory syndrome coronavirus with bifurcation analysis. Contemp Math [Internet]. 2024;5(3):3997-4012.

 

  1. Erturk V, Zaman G, Momani S. A numeric analytic method for approximating a giving up smoking model containing fractional derivatives. Com- put Math Appl. 2012;64(10):3065-3074.

 

  1. Elsadany AEA, El-Metwally HA, Elabbasy EM, et al. Chaos and bifurcation of a nonlinear discrete preypredator system. Comput Ecol Softw. 2012; 2(3):169-180.

 

  1. Shabestari PS, Panahi S, Hatef B, et al. A new chaotic model for model (1). Chaos Sol Fract. 2018;112:44-51.
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing