AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025060018
RESEARCH ARTICLE

Computational aspects of the crop field segmentation problem based on anisotropic active contour model

Ciro D’Apice1 Umberto De Maio2 Peter I. Kogut3,4 Rosanna Manzo4*
Show Less
1 Department of Management Innovation Systems, University of Salerno, Fisciano, Italy
2 Department of Mathematics and Applications “R. Caccioppoli”, University of Naples “Federico II”, Naples, Italy
3 Department of Differential Equations, Oles Honchar Dnipro National University, Dnipro, Ukraine
4 EOS Data Analytics Ukraine, Dnipro, Ukraine
5 Department of Political and Communication Sciences, University of Salerno, Fisciano, Italy
Received: 4 February 2025 | Revised: 4 April 2025 | Accepted: 11 April 2025 | Published online: 20 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we analyze the numerical aspects of the practical implementation of the generalized active contour model, that has been recently proposed in the literature, for extracting agricultural crop fields with a high level of inhomogeneity from satellite data. We also derive the corresponding Euler–Lagrange equation and discuss its relaxation method.

Keywords
Segmentation problem
Piecewise smooth approximation
Optimality conditions
Active contour model
Euler-Lagrange equation
Funding
None.
Conflict of interest
The authors declare no conflict of interest.
References
  1. D’Apice C., Kogut PI, Manzo R. On generalized active contour model in the anisotropic BV space and its application to satellite remote sens- ing of agricultural territory. Netw Heterogen Media. 2025;20(1): 113-142.

 

  1. Mulla DJ. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng. 2013; 114(4):358-

 

  1. Xue J, Su B. Significant remote sensing vegetation indices: a review of developments and applications. Hindawi J Sens. 2017;2017:1-17. (Article ID 1353691)

 

  1. Hnatushenko VV, Kogut PI, Uvarov M. Variational approach for rigid co-registration of optical/SAR satellite images in agricultural areas. J Comput Appl Math. 2022;400:15. Id

 

  1. Khanenko P, Kogut PI, Uvarov M. On variational problem with nonstandard growth conditions for the restoration of clouds corrupted satellite images. In: CEUR Workshop Proceedings, the 2nd International Workshop on Computational and Information Technologies for Risk-Informed Systems, CITRisk-2021, September 16-17, 2021, Kherson, Ukraine, Vol. 3101; 2021: 6-25.

 

  1. Ivanchuk N, Kogut PI, Martyniuk P. On generation of daily cloud free images at a high resolution level. In: M. Zgurovsky, N. Pankratova, eds. System Analysis and Artificial Intelligence. Studies in Computational Intelligence, Vol 1107. Cham: Springer; 2023: 203-232.

 

  1. D’Apice C, Kogut PI, Manzo R. A two-level variational algorithm in the Sobolev-Orlicz space to predict daily surface reflectance at LANDSAT high spatial resolution and MODIS temporal fre J Comput Appl Math. 2023;434:115339.

 

  1. D’Apice C, Kogut PI, Manzo R, Uvarov M. Variational model with nonstandard growth conditions for the restoration of satellite optical images using synthetic aperture radar. Eur J Appl Math. 2023; 34(1):77-105.

 

  1. Hnatushenko VV, Kogut PI, & Uvarov MV. On satellite image Segmentation via piecewise constant approximation of selective smoothed target mapping. Appl Math Comput. 2021;389:125615.

 

  1. Kogut PI, Kupenko OP, Uvarov NV. On increasing of resolution of satellite images via their fusion with imagery at higher resolution. J Optimiz DiffEquat Appl. 2021;29(1):54-78.

 

  1. Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math. 1989;42(5):577-685.

 

  1. Alvarez L, Lions PL, Morel J-M. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J Numer Anal. 1992;9(3):845- 866.

 

  1. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis. 1997;22(1):61- 79.

 

  1. Chan T, Vese L. Active contours without edges. IEEE Trans Image Process. 2001;10(2):266-277.

 

  1. Alvarez L, Guichard F, Lions PL, Morel J-M. Axioms and fundamental equations of image processing. Arch Ration Mech Anal. 1993;123(3):199-257.

 

  1. Catt´e F, Coll T, Lions PL, J-M. Image selective smoothing and edge detection by nonlinear diffusion. I. SIAM J Numer Anal. 1992;29(1):182-193.

 

  1. Yang C, Weng G, Chen Y. Active contour model based on local Kullback-Leibler divergence for fast image segmentation. Eng Appl Artif Intell. 2023;123:106472.

 

  1. Han B, Wun Y. Active contour model for inhomogenous image segmentation based on Jeffreys divergence. Pattern Recognit. 2020;107: 1075202.

 

  1. Yuan Y., He C. Adaptive active contours without edges. Math Comput Modell. 2012;55:1705-1721.

 

  1. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1988;1(4):321- 331.

 

  1. Dai L, Ding J, Yang J. Inhomogeneity-embedded active contour for natural image segmentation. Pattern Recognit. 2015;48(8):2513-2529.

 

  1. Chen Y, Wu L, Wang G, Weng G, Chen H. An active contour model for image segmentation using morphology and nonlinear Poisson’s equation. 2023;287: 170997.

 

  1. Fang L, Liang X, Xu C, Wang Q. Image segmentation using a novel dual active contour model. Multimedia Tools Appl. 2024;83(2):3707-724

 

  1. Ge P, Chen Y, Wang G, Weng G. An active contour model based on Jeffreys divergence and clustering technology for image segmentation. J Vis Commun Image Represent. 2024;99:104069.

 

  1. Kon NA, Jumaat AK, Suhaizi MDA. Active contour models for boundary extraction with application to medical images with noise. J Adv Res ApplSciEng Technol. 2024;33(2):300-312.

 

  1. Mazlin MS, Jumaat AK, Embong R. Partitioning intensity inhomogeneity colour images via Saliency-based active contour. Int J Elect Com- put Eng. 2024;14(1):337-346.

 

  1. Suryana ME, Rizki M, Irzal M, Aryani R. Solving wound perimeter detection with active contour model enhanced with interpolation. AIP Conf Proc. 2024;2982(1):060005.

 

  1. Zhang M, Meng D, Pei Y, Wen J. Research on image segmentation method based on improved Snake model. Multimedia Tools Appl. 2024;83(5):13977-13994.

 

  1. Ivanchuk N, Kogut PI, Kupenko O. Generalized active contour model in an anisotropic variable exponent Sobolev space. J Optimiz Diff Equat Appl. 2024;32(1):1-32.

 

  1. Kogut PI, Kohut Ya, Parfinovych N. Solvability issues for some noncoercive and nonmonotone parabolicequations arising in the image denoising problems. J Optimiz Differ Equat Appl. 2022;30(2):19-

 

  1. Kogut PI, Kohut Y, Manzo R. Fictitious controls and approximation of anAˆ optimal control problem for Perona-Malik equation. J Optimiz Differ Equat Appl. 2022;30(1):42-70.

 

  1. Anzellotti G. Pairings between measures and bounded functions and compensated compactness. Ann di Matematica Pura ed Appl. 1983; 135(IV): 293-318.

 

  1. Vese L. A study in the BV space of a denoising- deblurring variational problem. Appl Math Op- 2001;44:131-161.

 

  1. Ivanchuk N, Ivanchuk V. On PDE formulation of the relaxed version of generalized active con- tour model in anisotropic Sobolev space. J Opti- miz Differ Equat Applicat. 2024; 32(2):118-136.

 

  1. Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. New York: Springer; 2006: 147.

 

  1. Karami F, Meskine D, Sadik K. A new nonlocal model for the restoration of textured images. J Appl Anal Comput. 2019;9(6):2070-2095.

 

  1. Salgado AJ, Wise SM. Classical Numerical Analysis: A Comprehensive Course. Cambridge University Press; 2022.

 

  1. Maple C. Geometric design and space planning using the marching squares and marching cube algorithms. In: 2003 International Conference on Geometric Modeling and Graphics; 2003:90-95.

 

  1. Mantz H,  Jacobs  K,  Mecke  Utilizing Minkowski functionals for image analysis: a marching square algorithm. J Stat Mech: Theory Exp. 2008;12:12015.

 

  1. D’Apice C, Kogut PI, Kupenko O, Manzo R. On variational problem with nonstandard growth functional and its applications to image processing. J Math Imaging Vis. 2023;65(3): 472-491.
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing