A nonlinear mathematical model to describe the transmission dynamics of the citrus canker epidemic
In this article, a mathematical model is proposed to define the transmission dynamics of one of the most dangerous plant diseases, citrus canker, by using integer and fractional derivatives. For the fractional-order generalisation, the well-known Caputo fractional derivative is used with the singular-type kernel. The basic features of the proposed integer- and fractional-order models are defined by using well-known mathematical concepts. The proposed model is numerically solved by using the Chebyshev spectral collocation scheme. Some graphical justifications are also given to visualise the disease transmission in the population of citrus plants over time. This research study contains the first non-linear mathematical model of citrus canker transmission, which is the main novelty of this article.
[1] CAB International. Available from: https://www.cabi.org/isc/datasheet/56921#toDistributionMaps [Accessed 8 May 2022].
[2] Das, A. K. (2003). Citrus canker-A review. Journal of Applied Horticulture, 5(1), 52-60. https://doi.org/10.37855/jah.2003.v05i01.15
[3] Gottwald, T. R., Graham, J. H., & Schubert, T.S. (2002). Citrus canker: the pathogen and its impact. Plant Health Progress, 3(1), 15. https://doi.org/10.1094/PHP-2002-0812-01-RV
[4] Graham, J. H., Gottwald, T. R., Cubero, J., &Achor, D. S. (2004). Xanthomonas axonopodispv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5(1),1-15. https://doi.org/10.1046/j.1364-3703.2004.00197.x
[5] Stall, R. E., & Civerolo, E. L. (1991). Research relating to the recent outbreak of citrus canker in Florida. Annual Review of Phytopathology, 29(1),399-420. https://doi.org/10.1146/annurev.py.29.090191.002151
[6] Gottwald, T. R., Timmer, L. W., & McGuire, R.G. (1989). Analysis of disease progress of Citrus canker in nurseries in Argentina. Phytopathology,79(11), 1276-1283. https://doi.org/10.1094/Phyto-79-1276
[7] Behlau, F. (2021). An overview of citrus canker in Brazil. Tropical Plant Pathology, 46(1), 1-12. https://doi.org/10.1007/s40858-020-00377-2
[8] Gochez, A. M., Behlau, F., Singh, R., Ong, K.,Whilby, L., & Jones, J. B. (2020). Panorama of citrus canker in the United States. Tropical Plant Pathology, 45(3), 192-199. https://doi.org/10.1007/s40858-020-00355-8
[9] Balogh, B., Canteros, B. I., Stall, R. E., & Jones, J. B. (2008). Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Disease,92(7), 1048-1052. https://doi.org/10.1094/PDIS-92-7-1048
[10] Jia, H., Zhang, Y., Orbovi´c, V., Xu, J., White, F.F., Jones, J. B., &Wang, N. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7), 817-823. https://doi.org/10.1111/pbi.12677
[11] Ference, C. M., Gochez, A. M., Behlau, F., Wang, N., Graham, J. H., & Jones, J. B. (2018). Recentadvances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Molecular Plant Pathology,19(6), 1302. https://doi.org/10.1111/mpp.12638
[12] Abdulridha, J., Batuman, O., & Ampatzidis, Y. (2019). UAV-based remote sensing technique todetect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sensing,11(11), 1373. https://doi.org/10.3390/rs11111373
[13] Qin, J., Burks, T. F., Ritenour, M. A., & Bonn, W. G. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering,93(2), 183-191. https://doi.org/10.1016/j.jfoodeng.2009.01.014
[14] Hameed, A., Atiq, M., Ahmed, Z., Rajput, N.A., Younas, M., Rehman, A., ... & Ansari, M. J.(2022). Predicting the impact of environmental factors on citrus canker through multiple regression. Plos One, 17(4), e0260746. https://doi.org/10.1371/journal.pone.0260746
[15] Christiano, R. S. C., Dalla Pria, M., Jesus Junior, W. C., Amorim, L., & Bergamin Filho, A. (2009).Modelling the progress of Asiatic citrus canker on Tahiti lime in relation to temperature and leaf wetness. European Journal of Plant Pathology,124(1), 1-7. https://doi.org/10.1007/s10658-008-9389-8
[16] Podlubny, I. (1998). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier.
[17] Yavuz, M., Arfan, M., & Sami, A. (2024). Theoretical and numerical investigation of a modified ABC fractional operator for the spread of polio under the effect of vaccination. AIMS Biophysics,11(1). https://doi.org/10.3934/biophy.2024007
[18] Evirgen, F., ¨Ozk¨ose, F., Yavuz, M., & ¨ Ozdemir, N. (2023). Real data-based optimal control strategiesfor assessing the impact of the Omicron variant on heart attacks. AIMS Bioengineering, 10(3). https://doi.org/10.3934/bioeng.2023015
[19] Logaprakash, P., & Monica, C. (2023). Optimal control of diabetes model with the impact of endocrine-disrupting chemical: an emerging increased diabetes risk factor. Mathematical Modelling and Numerical Simulation with Applications, 3(4), 318-334. https://doi.org/10.53391/mmnsa.1397575
[20] Fatima, B., Yavuz, M., ur Rahman, M., Althobaiti, A., & Althobaiti, S. (2023). Predictive modeling and control strategies for the transmission of middle east respiratory syndrome coronavirus. Mathematical and Computational Applications, 28(5), 98. https://doi.org/10.3390/mca28050098
[21] Odionyenma, U. B., Ikenna, N., & Bolaji, B. (2023). Analysis of a model to control the co-dynamics of Chlamydia and Gonorrhea using Caputo fractional derivative. Mathematical Modelling and Numerical Simulation with Applications, 3(2), 111-140. https://doi.org/10.53391/mmnsa.1320175
[22] Joshi, H., Jha, B. K., & Yavuz, M. (2023). Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 20(1), 213-240. https://doi.org/10.3934/mbe.2023010
[23] Evirgen, F., U,car, E., U,car, S., & ¨ Ozdemir, N. (2023). Modelling influenza a disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates. Mathematical Modelling and Numerical Simulation with Applications, 3(1), 58-73. https://doi.org/10.53391/mmnsa.1274004
[24] Kumar, P., Baleanu, D., Erturk, V. S., Inc, M., & Govindaraj, V. (2022). A delayed plant disease model with Caputo fractional derivatives. Advances in Continuous and Discrete Models, 2022(1), 1-22. https://doi.org/10.1186/s13662-022-03684-x
[25] Vellappandi, M., Kumar, P., Govindaraj, V., & Albalawi, W. (2022). An optimal control problem for mosaic disease via Caputo fractional derivative. Alexandria Engineering Journal, 61(10), 8027-8037. h t t p s ://doi.org/10.1016/j.aej.2022.01.055
[26] Kumar, P., Erturk, V. S., Vellappandi, M., Trinh, H., & Govindaraj, V. (2022). A study on the maize streak virus epidemic model by using optimized linearization-based predictor corrector method in Caputo sense. Chaos, Solitons & Fractals, 158, 112067.h t t p s ://doi.org/10.1016/j.chaos.2022.112067
[27] Kumar, P., Erturk, V. S., Govindaraj, V., & Kumar, S. (2022). A Fractional Mathematical Modeling of Protectant and Curative Fungicide Application. Chaos, Solitons & Fractals: X, 100071. https://doi.org/10.1016/j.csfx.2022.100071
[28] Kumar, P., Suat Ert¨urk, V., & Nisar, K. S. (2021). Fractional dynamics of huanglongbing transmission within a citrus tree. Mathematical Methods in the Applied Sciences, 44(14), 11404- 11424. https://doi.org/10.1002/mma.7499
[29] Kumar, P., Erturk, V. S., & Almusawa, H. (2021). Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives. Results in Physics, 24, 104186. https://doi.org/10.1016/j.rinp.2021.104186
[30] ur Rahman, M., Arfan, M., & Baleanu, D. (2023). Piecewise fractional analysis of the migration effect in plant-pathogen-herbivore interactions. Bulletin of Biomathematics, 1(1), 1-23. https://doi.org/10.59292/bulletinbiomath.2023001
[31] Gonzalez-Guzman, J. (1989). An epidemiological model for direct and indirect transmission of typhoid fever. Mathematical Biosciences, 96(1), 33-46. h t t p s://doi.org/10.1016/0025-5564(89)90081-3
[32] Ghosh, M., Chandra, P., Sinha, P., & Shukla, J. B. (2005). Modelling the spread of bacterial disease: effect of service providers from an environmentally degraded region. Applied Mathematics and Computation, 160(3), 615-647. https://doi.org/10.1016/j.amc.2003.11.022
[33] Ghosh, M., Chandra, P., Sinha, P., &Shukla, J. B. (2006). Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population. Nonlinear Analysis: Real World Applications, 7(3), 341-363. h t t p s ://doi.org/10.1016/j.nonrwa.2005.03.005
[34] Asamoah, J. K. K., Nyabadza, F., Seidu, B., Chand, M., & Dutta, H. (2018). Mathematical modelling of bacterial meningitis transmission dynamics with control measures. Computational and Mathematical Methods in Medicine, 2018.https://doi.org/10.1155/2018/2657461
[35] Murata, Y. (2014). Mathematics for stability and optimization of economic systems. Academic
Press.
[36] Mason, J. C., & Handscomb, D. C. (2002). Chebyshev polynomials. Chapman and Hall/CRC.
[37] Snyder, M. A. (1966). Chebyshev methods in numerical approximation, Englewood Cliffs, New Jersey: Prentice-Hall Incorporated; 1966.
[38] Khader, M. M. (2011). On the numerical solutions for the fractional diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 16(6), 2535-2542. https://doi.org/10.1016/j.cnsns.2010.09.007
[39] Srivastava, H. M., Saad, K. M., & Khader, M. M. (2020). An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos, Solitons & Fractals, 140, 110174. https://doi.org/10.1016/j.chaos.2020.110174
[40] Khader, M. M., & Saad, K. (2018). A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos, Solitons & Fractals, 110, 169-177. h t t p s ://doi.org/10.1016/j.chaos.2018.03.018
[41] Sweilam, N. H., Nagy, A. M., & El-Sayed, A. A. (2016). On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. Journal of King Saud University-Science 28(1), 41-47. https://doi.org/10.1016/j.jksus.2015.05.002