A Boiti-Leon Pimpinelli equations with time-conformable derivative
In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other nonlinear partial differential equations.
[1] Singh, J., Kumar, D. & Kılıcman, A. (2013).Homotopy perturbation method for frac tional gas dynamics equation using Sumudu transform. Abstract and Applied Analysis.Vol.2013.
[2] Ait Touchent, K. & Belgacem, F. (2015).Nonlinear fractional partial differential equa tions systems solutions through a hybrid homotopy perturbation Sumudu transform method. Nonlinear Studies, 22, 591-600.
[3] Dinkar, S., Singh, P. & Chauhan S. (2016).Homotopy Perturbation Sumudu Transform Method with He’s Polynomial for Solutions of Some Fractional Nonlinear Partial Differen tial Equations. International Journal of Non linear Science, 21, 91-97.
[4] Youssif, E., & Hamed, S. (2014). Solution of nonlinear fractional differential equations using the homotopy perturbation Sumudu transform method. Applied Mathematical Sci- ences, 8, 2195-2210.
[5] Buckwar, E. & Luchko, Y. (1988). Invariance of a partial diferential equation of fractional order under the Lie group of scaling transfor- mations. J. Math. Anal.Appl., 227, 81-97.
[6] Hammouch, Z., Mekkaoui, T. & Agarwal, P. (2018). Optical solitons for the Calogero- Bogoyavlenskii-Schif equation in (2+1) di- mensions with time-fractional conformable derivative. European Physical Journal Plus, 133:248.
[7] Manaf an, J. & Foroutan, M. (2016). Appli- cation of tan (φ(ξ)/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik-International Journal for Light and Electron Optics, 127, 2040-2054.
[8] Hammouch, Z. & Mekkaoui, T. (2012). Travelling-wave solutions for some fractional partial diferential equation by means of gen- eralized trigonometry functions. International Journal of Applied Mathematical Research, 1, 206-212.
[9] Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., & Asghari, R. (2018). Traveling wave solution of conformable fractional gen- eralized reaction Du伍ng model by generalized projective Riccati equation method. Optical and Quantum Electronics, 50(3), 150.
[10] Tasbozan, O., Cenesiz, Y., & Kurt, A.(2016). New solutions for conformable frac- tional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function ex- pansion method. The European Physical Journal Plus, 131(7), 244.
[11] Zhu, J. & Ma, Z. (2005). An extended Jaco- bian elliptic function method for the discrete mKdV lattice. Chinese Physics, 14, 17.
[12] Hammouch, Z. & Mekkaoui, T. (2013). Ap- proximate analytical and numerical solutions to fractional KPP-like equations. General Mathematics Notes, 14(2), 1-9.
[13] Hammouch, Z. & Mekkaoui, T. (2015). Con- trol of a new chaotic fractional-order system using Mittag-Le er stability. Nonlinear Stud- ies, 22(4), 565-577.
[14] Hammouch, Z. & Mekkaoui, T. (2013). Approximate analytical solution to a time- fractional Zakharov-Kuznetsov equation. Int. J. Eng. Tech., 1, 1-13.
[15] Mekkaoui, T. & Hammouch, Z. (2012) . Ap- proximate analytical solutions to the Bagley- Torvik equation by the Fractional Iteration Method. Annals of the University of Craiova- Mathematics and Computer Science Series, 39(2), 251-256.
[16] Baskonus, H. et al. (2015). Active control of a chaotic fractional order economic system. Entropy, 17(8), 5771-5783.
[17] Yavuz, M. (2017). Novel solution methods for initial boundary value problems of fractional order with conformable diferentiation. An In- ternational Journal of Optimization and Con- trol: Theories & Applications, 8(1), 1-7.
[18] Yavuz, M. & Ozdemir N. (2017). New numer- ical techniques for solving fractional partial diferential equations in conformable sense. Non-Integer Order Calculus and its Applica- tions, Springer Cham., 49-62.
[19] Yavuz, M. & Yaskiran, B. (2018). Con- formable derivative operator in modelling neuronal dynamics. Applications & Applied Mathematics, 13(2), 803-817.
[20] Yavuz, M. & Ozdemir N. (2018). On the solu- tions of fractional Cauchy problem featuring conformable derivative. ITM Web of Confer- ences, Vol. 22. EDP Sciences.
[21] Yu, J., Liu, X. & Wang, T. (2010). Ex- act solutions and conservation laws of (2+ 1)-dimensional Boiti–Leon–Pempinelli equa- tion. Applied Mathematics and Computation, 216(8), 2293-2300.
[22] Dai, C. & Wang, Y. (2009). Periodic structures based on variable separa- tion solution of the (2+1)-dimensional Boiti–Leon–Pempinelli equation. Chaos, Solitons Fractals, 39, 350–355.
[23] Huang, D.J. & Zhang, H-Q. (2004). Exact travelling wave solutions for the Boiti–Leon–Pempinelli equation. Chaos Soli- tons and Fractals, 22, 243–247.
[24] Khalil, R., Al Horani, M., Yousef, A. & Sababheh, M. (2014). A new def nition offrac- tional derivative. Journal of Computational and Applied Mathematics, 264, 65-70.
[25] Yan, Z. (2003). A sinh-Gordon equation ex- pansion method to construct doubly periodic solutions for nonlinear diferential equations. Chaos, Solitons and Fractals, 16(2), 291-297.
[26] Qi, J., et al. (2014). Some new traveling wave exact solutions of the (2 + 1)-dimensional Boiti–Leon–Pempinelli equations. The Scien- tific World Journal, Vol.2014.