Approximate controllability of nonlocal non-autonomous Sobolev type evolution equations
[1] Chen, P.J., & Gurtin, M.E. (1968). On a the- ory of heat conduction involving two tempera- tures. Zeitschrift f¨ur angewandte Mathematik und Physik, 19(4), 614-627.
[2] Barenblatt, G.I., Zheltov, I.P., & Kochina, I.N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 24, 1286-1303.
[3] Taylor, D. (1952). Research on Consolidation of Clays. Massachusetts Institute of Technol- ogy Press, Cambridge.
[4] Brill, H. (1977). A semilinear Sobolev evolu- tion equation in a Banach space. Journal of Di erential Equations, 24, 412-425.
[5] Lightbourne, J.H., & Rankin, S.M. (1983). A partial diferential equation of Sobolev type. Journal of Mathematical Analysis and Appli- cations, 93, 328-337.
[6] Byszewski, L. (1991). Theorem about the ex- istence and uniqueness of solutions of a semi- linear evolution nonlocal Cauchy problem. Journal of Mathematical Analysis and Appli- cations, 162, 494-505.
[7] Curtain, R.F., & Zwart, H. (1995). An Intro- duction to Infinite-Dimensional Linear Sys- tems Theory. Springer-Verlag, New York.
[8] Mahmudov, N.I. (2003). Approximate con- trollability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM Journal on Control and Opti- mization, 42(5), 1604-1622.
[9] Shaktivel, R., Ren, Y., & Mahmudov, N.I.(2011). On the approximate controllability of semilinear fractional diferential systems. Computers and Mathematics with Applica- tions, 62, 1451-1459.
[10] Mahmudov, N.I., & Zorlu, S. (2013). Ap- proximate controllability of fractional integro- diferential equations involving nonlocal ini- tial conditions. Boundary Value Problems, 2013(118), 1-16.
[11] Mahmudov, N.I., & Zorlu, S. (2014). On the approximate controllability of fractional evo- lution equations with compact analytic semi- group. Journal of Computational and Applied Mathematics, 259, 194-204.
[12] Balasubramaniam, P., Vembarasan, V., & Senthilkumar, T. (2014). Approximate con- trollability of impulsive fractional integro- diferential systems with nonlocal conditions in Hilbert Space. Numerical Functional Anal- ysis and Optimization, 35(2), 177-197.
[13] Zhang, X., Zhu, C., & Yuan, C. (2015). Ap- proximate controllability of fractional impul- sive evolution systems involving nonlocal ini- tial conditions. Advances in Di erence Equa- tions, 2015(244), 1-14.
[14] Yan, Z. (2009). On solutions of semilin- ear evolution integro-diferential equations with nonlocal conditions. Tamkang Journal of Mathematics, 40(3), 257-269.
[15] Haloi, R., Pandey, D.N., & Bahuguna, D. (2012). Existence uniqueness ans asymp- totic stability of solutions to non-autonomous semi-linear diferential equations with devi- ated arguments. Nonlinear Dynamics and Systems Theory, 12(2), 179-191.
[16] Chadha, A., & Pandey, D.N. (2015). Mild so- lutions for non-autonomous impulsive semi- linear diferential equations with iterated de- viating arguments. Electronic Journal of Dif- ferential Equations, 2015(222), 1-14.
[17] Ahmed, H.M. (2012). Controllability for Sobolev type fractional integro-diferential systems in a Banach space. Advances in Dif- ferences Equations, 2012(167), 1-10.
[18] Mahmudov, N.I. (2013). Approximate controllability of fractional Sobolev type evolution equations in Banach space. Abstract and Applied Analysis, 2013, doi:10.1155/2013/502839.
[19] Haloi, R. (2017). Approximate controllability of non-autonomous nonlocal delay diferential equations with deviating arguments. Electroic Journal of Di erential Equations, 2017(111), 1-12.
[20] Friedman, A. (1997). Partial Diferential Equations. Dover publication.
[21] Pazy, A. (1993). Semigroup of Linear Op- erators and Applications to Partial Di er- ential Equations. Applied Mathematical Sci- ences, Springer-Verlag, New York.
[22] Granas, A., & Dugundji, J. (2003). Fixed Point Theory. Springer-Verlag, New York.