AccScience Publishing / IJOCTA / Volume 9 / Issue 1 / DOI: 10.11121/ijocta.01.2019.00585
RESEARCH ARTICLE

On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators

H¨useyin Budak1*
Show Less
1 Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce, Turkey
Submitted: 2 March 2018 | Accepted: 10 December 2018 | Published: 30 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we first establish weighted versions of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators utilizing weighted function. Then we obtain some refinements of these inequalities. The results obtained in this study would provide generalization of inequalities proved in earlier works.

Keywords
Hermite-Hadamard inequality
fractional integral operators
convex function
Conflict of interest
The authors declare they have no competing interests.
References

[1] Azpeitia, A.G. (1994). Convex functions and the Hadamard inequality. Rev. Colombiana Math., 28 , 7-12.

[2] Dragomir, S.S. and Pearce, C.E.M. (2000). Selected topics on Hermite-Hadamard in- equalities and applications. RGMIA Mono- graphs, Victoria University.

[3] Dragomir, S.S. (1992). Two mappings in con- nection to Hadamard’s inequalities. J. Math. Anal. Appl., 167, 49-56.

[4] Ertu◇gral, F., Sarlkaya, M. Z. and Bu- dak, H. (2018). On refinements of Hermite- Hadamard-Fejer type inequalities for frac- tional integral operators. Applications and Applied Mathematics, 13(1), 426-442.

[5] Farissi, A.E. (2010). Simple proof and re nement of Hermite-Hadamard inequality. J. Math. Inequal., 4, 365-369.

[6] Fej/er, L. (1906). Uberdie Fourierreihen, II, Math., Naturwise. Anz Ungar. Akad. Wiss, 24, 369-390.

[7] Goren丑o, R., Mainardi, F. (1997). Fractional calculus: integral and diferential equations of fractional order, Springer Verlag, Wien, 223- 276.

[8] Hwang, S.R., Yeh S.Y. and Tseng, K.L.(2014). Refinements and similar extensions of Hermite–Hadamard inequality for frac- tional integrals and their applications. Ap- plied Mathematics and Computation, 24, 103- 113.

[9] Hwang, S.R., Tseng, K.L., Hsu, K.C. (2013). Hermite–Hadamard type and Fejer type in- equalities for general weights (I). J. Inequal. Appl. 170.

[10] Iqbal, M., Qaisar S. and Muddassar, M.(2016). A short note on integral inequality of type Hermite-Hadamard through convex- ity. J. Computational analaysis and applica- tions, 21(5), 946-953.

[11] I(˙)>scan, I. (2015). Hermite-Hadamard-Fej/er type inequalities for convex functions via fractional integrals. Stud. Univ. Babe>s-Bolyai Math. 60(3), 355-366.

[12] Kilbas, A.A., Srivastava H.M. and Trujillo, J.J. (2006). Theory and applications of frac- tional diferential equations. North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam.

[13] Ahmad, B., Alsaedi, A., Kirane, M. and Torebek, B.T. (2019). Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. Journal of Computational and Applied Mathematics, 353, 120-129.

[14] Latif, M.A. (2012). On some refinements of companions of Fej/er’s inequality via superquadratic functions. Proyecciones J. Math., 31(4), 309-332.

[15] Miller S. and Ross, B. (1993). An introduc- tion to the fractional calculus and fractional diferential equations. John Wiley and Sons, USA.

[16] Noor, M.A., Noor K.I. and Awan, M.U.(2016). New fractional estimates of Hermite- Hadamard inequalities and applications to means, Stud. Univ. Babe>s-Bolyai Math. 61(1), 3-15.

[17] Pecari/c, J.E., Proschan F√ . and Tong, Y.L.(1992). Convex functions, partial orderings and statistical applications. Academic Press, Boston.

[18] Podlubny, I. (1999). Fractional diferential equations. Academic Press, San Diego.

[19] Sarikaya, M.Z. and Yildirim, H. (2016). On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Mathematical Notes, 17(2), 1049- 1059.

[20] Sarikaya, M.Z., Set, E., Yaldiz H. and Basak, N. (2013). Hermite-Hadamard’s inequalities for fractional integrals and related frac- tional inequalities. Mathematical and Com- puter Modelling, 57, 2403-2407.

[21] Sarikaya, M.Z. and Budak, H. (2016). Gen- eralized Hermite-Hadamard type integral in- equalities for fractional integral, Filomat, 30(5), 1315-1326 (2016).

[22] Xiang, R. (2015). Refinements of Hermite- Hadamard type inequalities for convex func- tions via fractional integrals. J. Appl. Math. and Informatics, 33, No. 1-2, 119-125.

[23] Tseng, K.L., Hwang, S.R. and Dragomir, S.S.(2012). Refinements of Fej/er’s inequality for convex functions. Period. Math. Hung., 65, 17-28.

[24] Yaldiz, H. and Sarikaya, M.Z. On Hermite- Hadamard type inequalities for fractional in- tegral operators, ResearchGate Article, Avail- able online at: https://www.researchgate. net/publication/309824275.

[25] Yang, G.S. and Tseng, K.L. (1999). On cer- tain integral inequalities related to Hermite- Hadamard inequalities. J. Math. Anal. Appl., 239, 180-187.

[26] Yang, G.S. and Hong, M.C. (1997). A note on Hadamard’s inequality, Tamkang J. Math., 28, 33-37.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing