On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators
In this paper, we first establish weighted versions of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators utilizing weighted function. Then we obtain some refinements of these inequalities. The results obtained in this study would provide generalization of inequalities proved in earlier works.
[1] Azpeitia, A.G. (1994). Convex functions and the Hadamard inequality. Rev. Colombiana Math., 28 , 7-12.
[2] Dragomir, S.S. and Pearce, C.E.M. (2000). Selected topics on Hermite-Hadamard in- equalities and applications. RGMIA Mono- graphs, Victoria University.
[3] Dragomir, S.S. (1992). Two mappings in con- nection to Hadamard’s inequalities. J. Math. Anal. Appl., 167, 49-56.
[4] Ertu◇gral, F., Sarlkaya, M. Z. and Bu- dak, H. (2018). On refinements of Hermite- Hadamard-Fejer type inequalities for frac- tional integral operators. Applications and Applied Mathematics, 13(1), 426-442.
[5] Farissi, A.E. (2010). Simple proof and re nement of Hermite-Hadamard inequality. J. Math. Inequal., 4, 365-369.
[6] Fej/er, L. (1906). Uberdie Fourierreihen, II, Math., Naturwise. Anz Ungar. Akad. Wiss, 24, 369-390.
[7] Goren丑o, R., Mainardi, F. (1997). Fractional calculus: integral and diferential equations of fractional order, Springer Verlag, Wien, 223- 276.
[8] Hwang, S.R., Yeh S.Y. and Tseng, K.L.(2014). Refinements and similar extensions of Hermite–Hadamard inequality for frac- tional integrals and their applications. Ap- plied Mathematics and Computation, 24, 103- 113.
[9] Hwang, S.R., Tseng, K.L., Hsu, K.C. (2013). Hermite–Hadamard type and Fejer type in- equalities for general weights (I). J. Inequal. Appl. 170.
[10] Iqbal, M., Qaisar S. and Muddassar, M.(2016). A short note on integral inequality of type Hermite-Hadamard through convex- ity. J. Computational analaysis and applica- tions, 21(5), 946-953.
[11] I(˙)>scan, I. (2015). Hermite-Hadamard-Fej/er type inequalities for convex functions via fractional integrals. Stud. Univ. Babe>s-Bolyai Math. 60(3), 355-366.
[12] Kilbas, A.A., Srivastava H.M. and Trujillo, J.J. (2006). Theory and applications of frac- tional diferential equations. North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam.
[13] Ahmad, B., Alsaedi, A., Kirane, M. and Torebek, B.T. (2019). Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. Journal of Computational and Applied Mathematics, 353, 120-129.
[14] Latif, M.A. (2012). On some refinements of companions of Fej/er’s inequality via superquadratic functions. Proyecciones J. Math., 31(4), 309-332.
[15] Miller S. and Ross, B. (1993). An introduc- tion to the fractional calculus and fractional diferential equations. John Wiley and Sons, USA.
[16] Noor, M.A., Noor K.I. and Awan, M.U.(2016). New fractional estimates of Hermite- Hadamard inequalities and applications to means, Stud. Univ. Babe>s-Bolyai Math. 61(1), 3-15.
[17] Pecari/c, J.E., Proschan F√ . and Tong, Y.L.(1992). Convex functions, partial orderings and statistical applications. Academic Press, Boston.
[18] Podlubny, I. (1999). Fractional diferential equations. Academic Press, San Diego.
[19] Sarikaya, M.Z. and Yildirim, H. (2016). On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Mathematical Notes, 17(2), 1049- 1059.
[20] Sarikaya, M.Z., Set, E., Yaldiz H. and Basak, N. (2013). Hermite-Hadamard’s inequalities for fractional integrals and related frac- tional inequalities. Mathematical and Com- puter Modelling, 57, 2403-2407.
[21] Sarikaya, M.Z. and Budak, H. (2016). Gen- eralized Hermite-Hadamard type integral in- equalities for fractional integral, Filomat, 30(5), 1315-1326 (2016).
[22] Xiang, R. (2015). Refinements of Hermite- Hadamard type inequalities for convex func- tions via fractional integrals. J. Appl. Math. and Informatics, 33, No. 1-2, 119-125.
[23] Tseng, K.L., Hwang, S.R. and Dragomir, S.S.(2012). Refinements of Fej/er’s inequality for convex functions. Period. Math. Hung., 65, 17-28.
[24] Yaldiz, H. and Sarikaya, M.Z. On Hermite- Hadamard type inequalities for fractional in- tegral operators, ResearchGate Article, Avail- able online at: https://www.researchgate. net/publication/309824275.
[25] Yang, G.S. and Tseng, K.L. (1999). On cer- tain integral inequalities related to Hermite- Hadamard inequalities. J. Math. Anal. Appl., 239, 180-187.
[26] Yang, G.S. and Hong, M.C. (1997). A note on Hadamard’s inequality, Tamkang J. Math., 28, 33-37.