Hermite-Hadamard's inequalities for conformable fractional integrals
In this paper, we establish the Hermite-Hadamard type inequalities for conformable fractional integral and we will investigate some integral inequalities connected with the left and right-hand side of the Hermite-Hadamard type inequalities for conformable fractional integral. The results presented here would provide generalizations of those given in earlier works and we show that some of our results are better than the other results with respect to midpoint inequalities.
[1] Beckenbach, E. F. (1948). Convex func- tions. Bull. Amer. Math. Soc., 54 439-460. http://dx.doi.org/10.1090/s0002-9904-1948- 08994-7.
[2] Hermite, C. (1883). Sur deux limites d’une integrale definie. Mathesis, 3, 82.
[3] Farissi, A.E. (2010). Simple proof and re- finement of Hermite-Hadamard inequality. J. Math.Inequal., 4(3), 365-369.
[4] Sarikaya, M.Z., Set, E., Yald1z, H. and Ba>sak, N. (2013). Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Modell., 57 (9), 2403–2407.
[5] Sarikaya, M.Z. and Aktan, N. (2011). On the generalization of some integral inequali- ties and their applications, Mathematical and Computer Modelling, 54(9–10), 2175–2182.
[6] K1rmac1, U.S. (2004). Inequalities for difer- entiable mappings and applications to special means of real numbers and to midpoint for- mula. Appl. Math. Comput., 147 (1), 137– 146.
[7] Dragomir, S.S. and Agarwal, R.P. (1998). Two inequalities for diferentiable mappings and applications to special means of real numbers and to trapezoidal formula. Applied Mathematics Letters, 11(5), 91-95.
[8] Mitrinovic, D.S. (1970). Analytic inequalities. Springer, Berlin-Heidelberg-New York.
[9] Abdeljawad, T. (2015). On conformable frac- tional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
[10] Anderson D.R. (2016). Taylors formula and integral inequalities for conformable frac- tional derivatives. In: Pardalos, P., Ras- sias, T. (eds) Contributions in Mathemat- ics and Engineering. Springer, Cham, 25- 43 https://doi.org/10.1007/978-3-319-31317-7-2.
[11] Khalil, R., Al horani, M., Yousef, A. and Sababheh, M. (2014). A new definition offrac- tional derivative. Journal of Computational Applied Mathematics, 264, 65-70.
[12] Iyiola, O.S. and Nwaeze, E.R. (2016). Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Difer. Appl., 2(2), 115-122.
[13] Abu Hammad, M. and Khalil, R. (2014). Conformable fractional heat diferentialequa- tions. International Journal of Diferential Equations and Applications, 13( 3), 177-183.
[14] Abu Hammad, M. and Khalil, R. (2014). Abel’s formula and wronskian for con- formable fractional diferential equations. In- ternational Journal of Diferential Equations and Applications, 13(3), 177-183.
[15] Akkurt, A., Y1ld1r1m, M.E. and Y1ld1r1m, H.(2017). On some integral inequalities for con- formable fractional integrals. Asian Journal of Mathematics and Computer Research, 15(3), 205-212.
[16] Akkurt, A., Y1ld1r1m, M.E. and Y1ld1r1m, H.(2017). A new generalized fractional deriv- ative and integral. Konuralp Journal of Math- ematics, 5(2), 248–259.
[17] Budak, H., Usta, F., Sarikaya, M.Z. and Ozdemir, M.E. (2018). On generalization of midpoint type inequalities with gener- alized fractional integral operators. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, https://doi.org/10.1007/s13398-018-0514-z
[18] Usta, F., Budak, H., Sarikaya, M.Z. and Set, E. (2018). On generalization of trapezoid type inequalities for s-convex functions with gener- alized fractional integral operators. Filomat, 32(6).