On Hermite-Hadamard type inequalities for S-Phi_preinvex functions by using Riemann-Liouville fractional integrals
[1] Katugampola, U. N. (2011). New Approach to a generalized fractional integral. Applied Mathematics and Computation, 218(3), 860- 865.
[2] Kilbas, A., Srivastava, H. M. and Trujillo, J.J.(2006). Theory and applications of fractional di erantial equations. Elsevier B.V., Amster-dam Netherlands.
[3] Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integral and Deriva- tives, Theory and Applications. Gordon and Breach, Yverdon et alibi.
[4] Ozdemir, M. E., Yildiz, C. and Kavur- maci, H. (2015). Fractional integral inequal- ities for diferent functions. New Trends in Mathematical Sciences, 3(2)2, 110-117.
[5] Sarikaya, M. Z., Set, E., Yaldiz, H. and Basak, N. (2013). Hermite-Hadamard’s. in- equalities for fractional integrals and re- lated fractional inequalities. Mathematical and Computer Modelling 57, 2403-2407.
[6] Wang, J., Li, X., Feckan, M. and Zhou, Y.(2012). Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Applicable Analysis, doi:10.1080/00036811.2012.727986.
[7] Y1ld1r1m, H. and K1rtay, Z. (2014). Ostrowski Inequality for Generalized Fractional Integral and Related Inequalities. Malaya Journal of Mathematics, 2(3) 322-329.
[8] Das, S. (2011). Functional Fractional Calcu- lus. Springer-Verlag, Berlin Heidelberg.
[9] Sarikaya, M. Z., Dahmani, Z., Kiris, M. and Ahmad, F. (2016). (k, s)-Riemann-Liouville fractional integral and applications. Hacettepe Journal of Mathematics and Statistics, 45(1), 77 – 89.
[10] Akkurt, A. and Y1ld1r1m, H. (2013). On Feng Qi type integral inequalities for gener- alized fractional integrals. International Ana- tolia Academic Online Journal, Scientific Sci- ence, 1(2), 22-25.
[11] Noor, M. A. and Awan, M. U. (2013). Some Integral inequalities for two kinds of convex- ities via fractional integrals. Transylvanian Journal of Mathematics and Mechanics, 5(2), 129-136.
[12] Cristescu, G. (2004). Hadamard type in- equalities for ϕ-convex functions, Annals of the University of Oradea, Fascicle of Man- agement and Technological Engineering, CD- Rom Edition, III (XIII).
[13] Dragomir, S. S. and Pearce, C. E. M. (2000). Selected topics on Hermite-Hadamard in- equalities and applications, Victoria Univer- sity, Australia.
[14] Dragomir, S. S., Pe/cari/c, J. and Persson, L. E. (1995). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21, 335-341.
[15] Cristescu, G. (2005). Improved integral in- equalities for products of convex functions. Journal of Inequalities in Pure and Applied Mathematics, 6(2).
[16] Zhang, T. Y., Ji, A. P. and Qi, F. (2013). Some inequalities of Hermite-Hadamard type for s-convex functions with applications to means, Le Matematiche LXVIII, Fasc. I, 229- 239, doi:10.4418/2013.68.1.17.
[17] Hanson, M. A. (1981). On su伍ciency of the Kuhn-Tucker conditions. Journal of Mathe- matical Analysis and Applications, 80(2), 545- 550.
[18] Noor, M. A., Awan, M. U., Noor, K. I. and Khan, S. (2015). Hermite–Hadamard type in- equalities for diferentiable hϕ-preinvex func- tions. Arabian Journal of Mathematics, 4, 63- 76.