AccScience Publishing / IJOCTA / Volume 9 / Issue 2 / DOI: 10.11121/ijocta.01.2019.00611
RESEARCH ARTICLE

Robust reformulations of ambiguous chance constraints with discrete probability distributions

Ihsan Yanıko˘glu1*
Show Less
1 Department of Industrial Engineering, Ozyegin University, ¨ Istanbul, Turkey ˙
IJOCTA 2019, 9(2), 236–252; https://doi.org/10.11121/ijocta.01.2019.00611
Submitted: 4 May 2018 | Accepted: 6 May 2019 | Published: 31 July 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract
This paper proposes robust reformulations of ambiguous chance constraints when the underlying family of distributions is discrete and supported in a so-called ``p-box'' or ``p-ellipsoidal'' uncertainty set. Using the robust optimization paradigm, the deterministic counterparts of the ambiguous chance constraints are reformulated as mixed-integer programming problems which can be tackled by commercial solvers for moderate sized instances. For larger sized instances, we propose a safe approximation algorithm that is computationally efficient and yields high quality solutions. The associated approach and the algorithm can be easily extended to joint chance constraints, nonlinear inequalities, and dependent data without introducing additional mathematical optimization complexity to that of the original robust reformulation. In numerical experiments, we first present our approach over a toy-sized chance constrained knapsack problem. Then, we compare optimality and computational performances of the safe approximation algorithm with those of the exact and the randomized approaches for larger sized instances via Monte Carlo simulation.
Keywords
robust optimization
chance constraint
ambiguous chance constraint
Conflict of interest
The authors declare they have no competing interests.
References

[1] Charnes, A. & Cooper, W.W. (1959). Chance- constrained programming. Management Sci- ence, 6(1), 73–79.

[2] Charnes, A., Cooper, W.W. & Symonds, G.H.(1958). Cost horizons and certainty equiva- lents: an approach to stochastic programming of heating oil. Management Science, 4(3), 235–263.

[3] Miller, B.L. & Wagner, H.M. (1965). Chance constrained programming with joint con- straints. Operations Research, 13(6), 930–945.

[4] Pr,ekopa, A. (1970). E伍cient robust opti- mization of metal forming processes using a sequential metamodel based strategy. In Proceedings of the Princeton Symposium on Mathematical Programming, Princeton Uni- versity Press, Princeton, NJ, 113–138.

[5] Burkauskas, A. (1986). On the convexity problem of probabilistic constraint stochastic programming problems. Alkalmazott Matem- atikai Lapok, 12, 77–90.

[6] Pr,ekopa, A. (1974). Programming under probabilistic constraints with a random tech- nology matrix. Mathematische Operations- forschung und Statistik, 5, 109–116.

[7] Van de Panne, C. & Popp, W., (1963). Minimum-cost cattle feed under probabilis- tic protein constraints. Management Science, 9(3), 405–430.

[8] Pr,ekopa, A. (1973). On logarithmic concave measures and functions. Acta Scientiarum Mathematicarum, 34, 335–343.

[9] Pr,ekopa, A. (1995). Stochastic Programming Kluwer Academic Publishers, Dordrecht, The Netherlands.

[10] Nemirovski, A. & Shapiro, A. (2006). Convex approximations of chance constrained pro- grams. SIAM Journal on Optimization, 17(4), 969–996.

[11] Ben-Tal, A. & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathe- matical Programming, 88(3), 411–424.

[12] Chen, W., Sim, M., Sun, J. & Teo, C.P.(2010). From CVaR to uncertainty set: impli- cations in joint chance-constrained optimiza- tion. Operations Research, 58(2), 470–485.

[13] Chen, X., Sim, M. & Sun, P. (2007). A robust optimization perspective on stochastic pro- gramming. Operations Research 55(6), 1058– 1107.

[14] Zymler S., Kuhn, D. & R¨ustem, B. (2013). Distributionally robust joint chance con- straints with second-order moment informa- tion. Mathematical Programming, 137(1-2), 167–198.

[15] Calafiore, G.C. & Campi, M.C. (2005). Un- certain convex programs: randomized so- lutions and confidence levels. Mathematical Programming, 102, 25–46.

[16] Campi, M.C. & Garatti, S. (2008). The ex- act feasibility of randomized solutions of ro- bust convex programs. SIAM Journal on Op- timization, 19(3), 1211–1230.

[17] Birge, J.R. & Wets, R.J.-B. (1986). Design- ing approximation schemes for stochastic op- timization problems, in particular for sto- chastic programs with recourse. Mathematical Programming Studies, 27, 54–102.

[18] DupaYcov,a, J. (2001). Stochastic Program- ming: minimax approach. In: Encyclopedia of Optimization. Kluwer Academic Publish- ers, Dordrecht, The Netherlands.

[19] Shapiro, A. & Ahmed, S. (2004). On a class of minimax stochastic programs. SIAM Jour- nal on Optimization, 14(4), 1237–1252.

[20] Shapiro, A. & Kleywegt, A.J. (2002). Min- imax analysis of stochastic problems. Opti- mization Methods and Software, 17, 523–542.

[21] Epstein, L.G. & Schneider, M. (2003). Re- cursive multiple-priors. Journal of Economic Theory, 113(1), 1–31.

[22] Epstein, L.G. & Schneider, M. (2007). Learn- ing under ambiguity. Review of Economic Studies, 74(4), 1275–1303.

[23] Hansen, L.P. & Sargent, T.J. (2001). Ro- bust control and model uncertainty. American Economic Review, 91, 60–66.

[24] Erdo an, E. & Iyengar, G. (2006). Am- biguous chance constrained problems and robust optimization. Mathematical Program- ming, 107(1–2), 37–61.

[25] Yanlko lu, I(˙), den Hertog, D. (2013). Safe ap-proximations of ambiguous chance constraints using historical data. INFORMS Journal on Computing, 25(4), 666–681.

[26] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.(2009). Robust Optimization. Princeton Press, Princeton, NJ.

[27] Nemirovski, A. (2012). On safe tractable ap- proximations of chance constraints. European Journal of Operations Research, 219(3), 707– 718

[28] Yanlko lu, I(˙) & den Hertog, D. & Kleij-nen, J.P.C. (2016). Robust dual-response op- timization. IIE Transactions, 48(3), 298–312.

[29] Luedtke, J. (2014). A branch-and-cut de- composition algorithm for solving chance- constrained mathematical programs with fi- nite support. Mathematical Programming 146(1–2), 219-244.

[30] Song, Y., Luedtke, J. R., & K¨u>c¨ukyavuz, S. (2014). Chance-constrained binary packing problems. INFORMS Journal on Computing, 26(4), 735-747.

[31] Hanasusanto, G.A., Roitch, V., Kuhn, D. & Wiesemann, W. (2015). A distributionally robust perspective on uncertainty quantifi- cation and chance constrained programming. Mathematical Programming, 151(1), 35–62.

[32] Hanasusanto, G.A., Roitch, V., Kuhn, D. & Wiesemann, W. (2017). Ambiguous joint chance constraints under mean and dispersion information. Operations Research, 65(3), 751– 767.

[33] Jiang, R. & Guan, Y. (2016). Data-driven chance constrained stochastic program. Math- ematical Programming, 158(1-2), 291–327.

[34] Chen, Z., Kuhn, D., & Wiesemann, W.(2018). Data-driven chance constrained pro- grams over Wasserstein Balls. arXiv preprint, arXiv:1809.00210.

[35] Ji, R. & Lejeune, M. (2018). Data-driven dis- tributionally robust chance-constrained pro- gramming with Wasserstein metric. Available at Optimization Online.

[36] Zhang, Y., Jiang, R. & Shen, S. (2016). Dis- tributionally robust chance-constrained bin packing. Available at Optimization Online.

[37] Cheng, J., Delage, E. & Lisser, A. (2014). Distributionally robust stochastic knapsack problem. SIAM Journal on Optimization, 24(3), 1485–1506.

[38] Hu, Z. & Hong, L.J. (2013). Kullback-Leibler divergence constrained distributionally ro- bust optimization. Available at Optimization Online.

[39] Xie, W. & Ahmed, S. (2018). On determin- istic reformulations of distributionally robust joint chance constrained optimization prob- lems. SIAM Journal on Optimization, 28(2), 1151–1182.

[40] Xie, W., Ahmed, S. & Jiang, R. (2017). Optimized Bonferroni approximations of dis- tributionally robust joint chance constraints. Available at Optimization Online.

[41] Xie, W. (2018). On distributionally robust chance constrained program with wasserstein distance. arXiv preprint, arXiv:1806.07418.

[42] Mehrotra, S. & Zhang, H. (2014). Mod- els and algorithms for distributionally robust least squares problems. Mathematical Pro- gramming, 146(1-2), 123–141.

[43] O(¨)zmen, A., Weber, G.W., Batmaz, I(˙) . &Kropat, E. (2011). RCMARS: Robustifica- tion of CMARS with diferent scenarios under polyhedral uncertainty set. Communications in Nonlinear Science and Numerical Simula- tion, 16(12), 4780–4787.

[44] Friedman, J.H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19(1), 1–141.

[45] Weber, G.W., Batmaz, I(˙)., K¨oksal, G.,Taylan, P. & F. Yerlikaya-O(¨)zkurt, (2012).CMARS: a new contribution to nonparamet- ric regression with multivariate adaptive re- gression splines supported by continuous op- timization. Inverse Problems in Science and Engineering, 20(3), 371–400.

[46] Bemis, C., Hu, X., Lin, W., Moazeni, S., Wang, L., Wang, T. & Zhang, J. (2009). Ro- bust portfolio optimization using a simple fac- tor model. IMA Preprint Series, No. 2284, University of Minnesota, Minneapolis, MN.

[47] Kara, G., O(¨)zmen, A., & Weber, G. W.(2019). Stability advances in robust portfo- lio optimization under parallelepiped uncer- tainty. Central European Journal of Opera- tions Research, 27(1), 241–261.

[48] Postek, K., den Hertog, D. & Melenberg, B. (2016). Computationally tractable coun- terparts of distributionally robust constraints on risk measures. SIAM Review, 58(4), 603- –650.

[49] Gorissen, B.L., Yanlkoglu, I(˙) & den Hertog,D. (2015). A practical guide to robust opti- mization. Omega, 53, 124–137.

[50] Ben-Tal, A., den Hertog, D. & and Vial, J.-P. (2015). Deriving robust counterparts of nonlinear uncertain inequalities. Mathemati- cal Programming, 149(1-2), 265–299.

[51] Yanlkoglu, I(˙) . (2018). Selected Topics in Ro-bust Optimization. In: Optimization Tech- niques for Problem Solving in Uncertainty. IGI Global, PA, USA.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing