AccScience Publishing / IJOCTA / Volume 8 / Issue 1 / DOI: 10.11121/ijocta.01.2018.00417
RESEARCH ARTICLE

New travelling wave solutions for fractional regularized long-wave equation and fractional coupled Nizhnik-Novikov-Veselov equation

Ozkan G¨uner1*
Show Less
1 Department of International Trade, Faculty of Economics and Administrative Sciences, C¸ ankırı Karatekin University, C¸ ankırı, Turkey
Submitted: 15 November 2016 | Accepted: 16 June 2017 | Published: 23 October 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract
In this paper, solitary-wave ansatz and the (G?/G)-expansion methods have been used to obtain exact solutions of the fractional regularized long-wave (RLW) and coupled Nizhnik-Novikov-Veselov (NNV) equation. As a result, three types of exact analytical solutions such as rational function solutions, trigonometric function solutions, hyperbolic function solutions are formally derived these equations. Proposed methods are more powerful and can be applied to other fractional differential equations arising in mathematical physics.
Keywords
Exact solution
ansatz method
(G′/G)-expansion method
fractional regularized long-wave equation
fractional coupled Nizhnik-Novikov-Veselov equation
Conflict of interest
The authors declare they have no competing interests.
References

[1] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Diferential Equations, Wiley, New York.

[2] Podlubny, I. (1999). Fractional Diferential Equations, Academic Press, California.

[3] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.(2006). Theory and Applications of Fractional Difer- ential Equations, Elsevier, Amsterdam .

[4] Song, L., Wang, W. (2013). A new improved Ado- mian decomposition method and its application to fractional diferential equations. Applied Mathemati- cal Modelling. 37 (3) 1590–1598.

[5] Wang, Q. (2007). Homotopy perturbation method for fractional KdV equation. Appl. Math. Comput.. 190 1795-802.

[6] Wu, G.C. and Baleanu, D. (2013). Variational itera-tion method for fractional calculus - a universal ap- proach by Laplace transform. Advances in Diference Equations. 2013 18.

[7] Cui, M. (2009). Compact finite diference method for the fractional difusion equation. Journal of Compu- tational Physics. 228 (20) 7792–7804.

[8] Khan, N.A., Ara, A. and Mahmood, A. (2012). Numerical solutions of time-fractional Burgers equa- tions: a comparison between generalized diferential transformation technique and homotopy perturbation method. Int. J. Num. Meth. Heat & Fl. Flow. 22 (2) 175-193.

[9] Song, L. and Zhang, H. (2007). Application of ho- motopy analysis method to fractional KdV-Burgers- Kuramoto equation. Phys. Lett. A. 367 88–94.

[10] El-Ajou, A., Odibat, Z., Momani, S. and Alawneh, A.(2010). Construction of analytical solutions to frac- tional diferential equations using homotopy analysis method. Int. J. Appl. Math. 40 (2) 43-51.

[11] Tian, S.F. and Zhang, H.Q. (2012). On the integra- bility of a generalized variable-coe伍cient Kadomtsev- Petviashvili equation. Journal of Physics A: Mathe- matical and Theoretical. 45, 055203. .

[12] Tian, S.F. and Zhang, H.Q. (2014). On the inte- grability of a generalized variable-coe伍cient forced Korteweg-de Vries equation in 丑uids. Stud. Appl. Math.132, 212–246.

[13] Mohyud-Din, S., Y1ld1r1m, A. and Y¨ul¨ukl¨u, E. (2012). Homotopy analysis method for space- and time- fractional KdV equation, Int. J. Num. Meth. Heat & Fl. Flow. 22 (7), 928-941.

[14] Sahoo, S. and Ray, S.S. (2015). Improved fractional sub-equation method for (3+1)-dimensional general- ized fractional KdV–Zakharov–Kuznetsov equations. Computers and Mathematics with Applications. 70, 158–166.

[15] Zhang, S. and Zhang, H.Q. (2011). Fractional sub- equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A. 375, 1069–1073.

[16] Tian, S.F. (2017). Initial–boundary value problems for the general coupled nonlinear Schr¨odinger equation on the interval via the Fokas method. J. Diferential Equations, 262, 506-558.

[17] Tian, S.F. (2016). The mixed coupled nonlinear Schr¨odinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A. 472, 20160588.

[18] Bekir, A., Guner, O. and Unsal, O. (2015). The first integral method for exact solutions of nonlinear frac- tional diferential equations, J. Comput. Nonlinear Dynam. 10(2), 021020-5.

[19] Baleanu, D., U口gurlu, Y. and Kilic, B. (2015). Im- proved (G′/G) − expansion method for the time- fractional biological population model and Cahn– Hilliard equation. J. Comput. Nonlinear Dynam. 10 (5) 051016.

[20] Tu, J.M., Tian, S.F., Xu, M.J., Ma, P.L. and Zhang, T.T. (2016). On periodic wave solutions with asymp- totic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in 丑uid dy- namics. Comput. & Math. Appl. 72, 2486–2504.

[21] Bekir, A., Guner, O., Bhrawy, A.H. and Biswas, A.(2015). Solving nonlinear fractional diferential equa- tions using exp-function and (G′ /G)-expansion meth- ods. Rom. Journ. Phys. 60(3-4), 360-378.

[22] Bulut, H., Baskonus, H M. and Pandir, Y. (2013). The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation. Abstract and Applied Analysis. 636802.

[23] Guner, O. and Eser, D. (2014). Exact solutions of the spacetime fractional symmetric regularized longwave equation using diferent methods. Advances in Math- ematical Physics. 456804 .

[24] Zhang, S., Zong Q-A., Liu, D. and Gao, Q. (2010). A generalized exp-function method for fractional riccati diferential equations. Communications in Fractional Calculus. 1, 48-51.

[25] Guner, O., Bekir, A. and Bilgil, H. (2015). A note on exp-function method combined with complex trans- form method applied to fractional diferential equa- tions. Adv. Nonlinear Anal. 4(3), 201–208.

[26] Kaplan, M., Bekir, A., Akbulut, A. and Aksoy, E.(2015). The modified simple equation method for non- linear fractional diferential equations. Rom. Journ. Phys. 60(9-10), 1374–1383.

[27] Kaplan, M., Akbulut, A. and Bekir, A. (2016). Solving space-time fractional diferential equations by using modified simple equation method, Commun. Theor. Phys. 65(5), 563–568.

[28] Aksoy, E., Kaplan, M. and Bekir, A. (2016). Exponen- tial rational function method for space-time fractional diferential equations. Waves in Random and Complex Media. 26(2), 142-151.

[29] Guner, O. (2015). Singular and non-topological soli- ton solutions for nonlinear fractional diferential equa- tions. Chin. Phys. B. 24(10), 100201.

[30] Guner, O. and Bekir, A. (2016). Bright and dark soli- ton solutions for some nonlinear fractional diferential equations. Chin. Phys. B. 25(3), 030203.

[31] Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.(2016). Quasi-periodic waves and solitary waves to a generalized KdV-Caudrey-Dodd-Gibbon equation from 丑uid dynamics. Taiwanese J. Math. 20, 823-848.

[32] Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.(2016). On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov equation, Appl. Math. Comput. 275, 345–352.

[33] Lin, S.D. and Lu, C.H. (2013). Laplace transform for solving some families of fractional diferential equa- tions and its applications. Advances in Diference Equations. 137.

[34] Srivastava, H.M., Golmankhaneh, A.K., Baleanu, D. and Yang, X.J. (2014). Local fractional Sumudu trans- form with application to IVPs on Cantor sets. Abstract and Applied Analysis. 620529.

[35] Wang, X.B., Tian, S.F., Xua, M.J. and Zhang T.T.(2016). On integrability and quasi-periodic wave so- lutions to a (3+1)-dimensional generalized KdV-like model equation. Appl. Math. Comput. 283, 216–233.

[36] Arnous, A.H. and Mirzazadeh, M. (2015). B¨acklund transformation of fractional Riccati equation and its applications to the space–time FDEs. Mathematical Methods in the Applied Sciences. 38(18), 4673–4678.

[37] Feng, L.L., Tian, S.F., Wang, X.B. and Zhang, T.T. (2017). Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Appl. Math. Lett. 65, 90–97.

[38] Tian, S.F., Zhang, Y.F., Feng, B.L. and Zhang, H.Q.(2015). On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evo- lution equations in shallow water. Chin. Ann. Math. 36B, 543–560.

[39] Tian, S.F., Wang, Z. and Zhang, H.Q. (2010). Some types of solutions and generalized binary Dar- boux transformation for the mKP equation with self- consistent sources. J. Math. Anal. Appl. 366, 646-662.

[40] Al-Shara, S. (2014). Fractional transformation method for constructing solitary wave solutions to some nonlinear fractional partial diferential equa- tions. Applied Mathematical Sciences. 8, 5751-5762.

[41] Xu, M.J., Tian, S.F., Tu, J.M. and Zhang T.T. (2016). B¨acklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)- dimensional Boussinesq equation. Nonlinear Anal. : Real World Appl. 31, 388–408.

[42] Li, Z.B. and He, J. H. (2011). Application of the fractional complex transform to fractional diferential equations. Nonlinear Sci. Lett. A. 2121-126.

[43] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Royal Astronom. Soc. 13, 529-539.

[44] Jumarie, G. (2006). Modified Riemann–Liouville de- rivative and fractional Taylor series of nondiferen- tiable functions further results. Comput. Math. Appl. 51, 1367–1376.

[45] Jumarie, G. (2009). Table of some basic fractional calculus formulae derived from a modified Riemann- Liouvillie derivative for nondiferentiable functions. Appl. Maths. Lett.. 22, 378-385.

[46] He, J H., Elegan, S.K. and Li, Z.B. (2012). Geomet- rical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A. 376, 257–259.

[47] Biswas, A. (2008). 1-soliton solution of the K(m, n) equation with generalized evolution. Phys. Lett. A. 372, 4601-4602.

[48] Triki, H., Wazwaz, A.M. (2009). Bright and dark soli- ton solutions for a K(m, n) equation with t-dependent coe伍cients. Phys. Lett. A. 373, 2162–2165.

[49] Bekir, A., Guner, O. (2013). Bright and dark soliton solutions of the (3+1)-dimensional general- ized Kadomtsev–Petviashvili equation and generalized Benjamin equation. Pramana J. Phys. 81, 203.

[50] Triki, H., Milovic, D. and Biswas, A. (2013). Solitary waves and shock waves of the KdV6 equation. Ocean Engineering. 73, 119–125.

[51] Younis, M. and Ali, S. (2015). Bright, dark, and sin- gular solitons in magneto-electro-elastic circular rod. Waves in Random and Complex Media. 25(4), 549- 555.

[52] Bekir, A. and Guner, O. (2013). Topological (dark) soliton solutions for the Camassa–Holm type equa- tions. Ocean Engineering. 74, 276–279.

[53] Abdel-Salam, E.A.B., Hassan, G.F. (2016). Solutions to class of linear and nonlinear fractional diferential equations. Commun. Theor. Phys.. 65, 127–135.

[54] Peregrine, D.H. (1966). Calculations of the develop- ment of an undular bore. J. Fluid Mech. 25, 321–330.

[55] Peregrine, D.H. (1967). Long waves on a beach. J. Fluid Mech. 27, 815–827.

[56] Benjamin, T.B., Bona, J.L. and Mahony, J. (1972). Model equations for waves in nonlinear dispersive sys-tems. J. Philos. Trans. R. Soc. Lond. 227, 47–78.

[57] Abdel-Salam, E.A.B., Yousif, E.A. (2013). Solution of nonlinear space-time fractional diferential equations using the fractional riccati expansion method. Mathe- matical Problems in Engineering. 846283.

[58] Esen, A. and Kutluay, S. (2006). Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 833–845.

[59] Dag, I. (2000). Least square quadratic B-spline finite element method for the regularized long wave equa- tion. Comp. Meth. Appl. Mech. Eng. 182, 205–215.

[60] Dag, I. and Ozer, M.N. (2001). Approximation of RLW equation by least square cubic B-spline finite element method. Appl. Math. Model. 25, 221–231.

[61] Saka, B., Dag, I. and Irk, D. (2008). Quintic B- spline collocation method for numerical solutions of the RLW equation. Anziam J. 49(3), 389–410.

[62] Saka, B., Sahin, A., Dag, I. (2011). B-spline collo- cation algorithms for numerical solution of the RLW equation. Numer. Meth. Part. D. E. 27, 581–607.

[63] Yusufoglu, E. and Bekir, A. (2007). Application of the variational iteration method to the regularized long wave equation. Computers and Mathematics with Ap- plications. 54, 1154–1161.

[64] Liu, Y. and Yan, L. (2013). Solutions of fractional Konopelchenko-Dubrovsky and Nizhnik-Novikov- Veselov equations using a generalized fractional subequation method. Abstract and Applied Analysis. 839613.

[65] Hong, T., Wang, Y.Z. and Huo, Y.S. (1998). Bogoli- ubov quasiparticles carried by dark solitonic excita- tions in nonuniform Bose Einstein condensates. Chin. Phys. Lett. 15, 550 552.

[66] Das, G.C. (1997). Explosion of soliton in a multicom- ponent plasma. Phys. Plasmas. 4, 2095-2100.

[67] Lou, S.Y. (1999). A direct perturbation method: Non- linear Schrodinger equation with loss. Chin. Phys. Lett. 16, 659-661.

[68] Shin, B.C., Darvishi, M.T. and Barati, A. (2009). Some exact and new solutions of the Nizhnik Novikov Vesselov equation using the Exp-function method. Computers and Mathematics with Applications. 58, 2147-2151.

[69] Deng, C. (2010). New abundant exact solutions for the (2 + 1)-dimensional generalized Nizhnik–Novikov– Veselov system. Commun Nonlinear Sci Numer Sim- ulat. 15, 3349–3357

[70] Boubir, B., Triki, H. and Wazwaz, A.M. (2013). Bright solitons of the variants of the Novikov–Veselov equa- tion with constant and variable coe伍cients. Applied Mathematical Modelling. 37, 420–431.

[71] Wang, M.L., Li X. and Zhang, J. (2008). The (G/G)-expansion method and travelling wave solu- tions of nonlinear evolution equations in mathematical physics. Phys. Lett. A. 372(4), 417-423.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing