New travelling wave solutions for fractional regularized long-wave equation and fractional coupled Nizhnik-Novikov-Veselov equation
[1] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Diferential Equations, Wiley, New York.
[2] Podlubny, I. (1999). Fractional Diferential Equations, Academic Press, California.
[3] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.(2006). Theory and Applications of Fractional Difer- ential Equations, Elsevier, Amsterdam .
[4] Song, L., Wang, W. (2013). A new improved Ado- mian decomposition method and its application to fractional diferential equations. Applied Mathemati- cal Modelling. 37 (3) 1590–1598.
[5] Wang, Q. (2007). Homotopy perturbation method for fractional KdV equation. Appl. Math. Comput.. 190 1795-802.
[6] Wu, G.C. and Baleanu, D. (2013). Variational itera-tion method for fractional calculus - a universal ap- proach by Laplace transform. Advances in Diference Equations. 2013 18.
[7] Cui, M. (2009). Compact finite diference method for the fractional difusion equation. Journal of Compu- tational Physics. 228 (20) 7792–7804.
[8] Khan, N.A., Ara, A. and Mahmood, A. (2012). Numerical solutions of time-fractional Burgers equa- tions: a comparison between generalized diferential transformation technique and homotopy perturbation method. Int. J. Num. Meth. Heat & Fl. Flow. 22 (2) 175-193.
[9] Song, L. and Zhang, H. (2007). Application of ho- motopy analysis method to fractional KdV-Burgers- Kuramoto equation. Phys. Lett. A. 367 88–94.
[10] El-Ajou, A., Odibat, Z., Momani, S. and Alawneh, A.(2010). Construction of analytical solutions to frac- tional diferential equations using homotopy analysis method. Int. J. Appl. Math. 40 (2) 43-51.
[11] Tian, S.F. and Zhang, H.Q. (2012). On the integra- bility of a generalized variable-coe伍cient Kadomtsev- Petviashvili equation. Journal of Physics A: Mathe- matical and Theoretical. 45, 055203. .
[12] Tian, S.F. and Zhang, H.Q. (2014). On the inte- grability of a generalized variable-coe伍cient forced Korteweg-de Vries equation in 丑uids. Stud. Appl. Math.132, 212–246.
[13] Mohyud-Din, S., Y1ld1r1m, A. and Y¨ul¨ukl¨u, E. (2012). Homotopy analysis method for space- and time- fractional KdV equation, Int. J. Num. Meth. Heat & Fl. Flow. 22 (7), 928-941.
[14] Sahoo, S. and Ray, S.S. (2015). Improved fractional sub-equation method for (3+1)-dimensional general- ized fractional KdV–Zakharov–Kuznetsov equations. Computers and Mathematics with Applications. 70, 158–166.
[15] Zhang, S. and Zhang, H.Q. (2011). Fractional sub- equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A. 375, 1069–1073.
[16] Tian, S.F. (2017). Initial–boundary value problems for the general coupled nonlinear Schr¨odinger equation on the interval via the Fokas method. J. Diferential Equations, 262, 506-558.
[17] Tian, S.F. (2016). The mixed coupled nonlinear Schr¨odinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A. 472, 20160588.
[18] Bekir, A., Guner, O. and Unsal, O. (2015). The first integral method for exact solutions of nonlinear frac- tional diferential equations, J. Comput. Nonlinear Dynam. 10(2), 021020-5.
[19] Baleanu, D., U口gurlu, Y. and Kilic, B. (2015). Im- proved (G′/G) − expansion method for the time- fractional biological population model and Cahn– Hilliard equation. J. Comput. Nonlinear Dynam. 10 (5) 051016.
[20] Tu, J.M., Tian, S.F., Xu, M.J., Ma, P.L. and Zhang, T.T. (2016). On periodic wave solutions with asymp- totic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in 丑uid dy- namics. Comput. & Math. Appl. 72, 2486–2504.
[21] Bekir, A., Guner, O., Bhrawy, A.H. and Biswas, A.(2015). Solving nonlinear fractional diferential equa- tions using exp-function and (G′ /G)-expansion meth- ods. Rom. Journ. Phys. 60(3-4), 360-378.
[22] Bulut, H., Baskonus, H M. and Pandir, Y. (2013). The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation. Abstract and Applied Analysis. 636802.
[23] Guner, O. and Eser, D. (2014). Exact solutions of the spacetime fractional symmetric regularized longwave equation using diferent methods. Advances in Math- ematical Physics. 456804 .
[24] Zhang, S., Zong Q-A., Liu, D. and Gao, Q. (2010). A generalized exp-function method for fractional riccati diferential equations. Communications in Fractional Calculus. 1, 48-51.
[25] Guner, O., Bekir, A. and Bilgil, H. (2015). A note on exp-function method combined with complex trans- form method applied to fractional diferential equa- tions. Adv. Nonlinear Anal. 4(3), 201–208.
[26] Kaplan, M., Bekir, A., Akbulut, A. and Aksoy, E.(2015). The modified simple equation method for non- linear fractional diferential equations. Rom. Journ. Phys. 60(9-10), 1374–1383.
[27] Kaplan, M., Akbulut, A. and Bekir, A. (2016). Solving space-time fractional diferential equations by using modified simple equation method, Commun. Theor. Phys. 65(5), 563–568.
[28] Aksoy, E., Kaplan, M. and Bekir, A. (2016). Exponen- tial rational function method for space-time fractional diferential equations. Waves in Random and Complex Media. 26(2), 142-151.
[29] Guner, O. (2015). Singular and non-topological soli- ton solutions for nonlinear fractional diferential equa- tions. Chin. Phys. B. 24(10), 100201.
[30] Guner, O. and Bekir, A. (2016). Bright and dark soli- ton solutions for some nonlinear fractional diferential equations. Chin. Phys. B. 25(3), 030203.
[31] Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.(2016). Quasi-periodic waves and solitary waves to a generalized KdV-Caudrey-Dodd-Gibbon equation from 丑uid dynamics. Taiwanese J. Math. 20, 823-848.
[32] Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.(2016). On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov equation, Appl. Math. Comput. 275, 345–352.
[33] Lin, S.D. and Lu, C.H. (2013). Laplace transform for solving some families of fractional diferential equa- tions and its applications. Advances in Diference Equations. 137.
[34] Srivastava, H.M., Golmankhaneh, A.K., Baleanu, D. and Yang, X.J. (2014). Local fractional Sumudu trans- form with application to IVPs on Cantor sets. Abstract and Applied Analysis. 620529.
[35] Wang, X.B., Tian, S.F., Xua, M.J. and Zhang T.T.(2016). On integrability and quasi-periodic wave so- lutions to a (3+1)-dimensional generalized KdV-like model equation. Appl. Math. Comput. 283, 216–233.
[36] Arnous, A.H. and Mirzazadeh, M. (2015). B¨acklund transformation of fractional Riccati equation and its applications to the space–time FDEs. Mathematical Methods in the Applied Sciences. 38(18), 4673–4678.
[37] Feng, L.L., Tian, S.F., Wang, X.B. and Zhang, T.T. (2017). Rogue waves, homoclinic breather waves and soliton waves for the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Appl. Math. Lett. 65, 90–97.
[38] Tian, S.F., Zhang, Y.F., Feng, B.L. and Zhang, H.Q.(2015). On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evo- lution equations in shallow water. Chin. Ann. Math. 36B, 543–560.
[39] Tian, S.F., Wang, Z. and Zhang, H.Q. (2010). Some types of solutions and generalized binary Dar- boux transformation for the mKP equation with self- consistent sources. J. Math. Anal. Appl. 366, 646-662.
[40] Al-Shara, S. (2014). Fractional transformation method for constructing solitary wave solutions to some nonlinear fractional partial diferential equa- tions. Applied Mathematical Sciences. 8, 5751-5762.
[41] Xu, M.J., Tian, S.F., Tu, J.M. and Zhang T.T. (2016). B¨acklund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)- dimensional Boussinesq equation. Nonlinear Anal. : Real World Appl. 31, 388–408.
[42] Li, Z.B. and He, J. H. (2011). Application of the fractional complex transform to fractional diferential equations. Nonlinear Sci. Lett. A. 2121-126.
[43] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Royal Astronom. Soc. 13, 529-539.
[44] Jumarie, G. (2006). Modified Riemann–Liouville de- rivative and fractional Taylor series of nondiferen- tiable functions further results. Comput. Math. Appl. 51, 1367–1376.
[45] Jumarie, G. (2009). Table of some basic fractional calculus formulae derived from a modified Riemann- Liouvillie derivative for nondiferentiable functions. Appl. Maths. Lett.. 22, 378-385.
[46] He, J H., Elegan, S.K. and Li, Z.B. (2012). Geomet- rical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A. 376, 257–259.
[47] Biswas, A. (2008). 1-soliton solution of the K(m, n) equation with generalized evolution. Phys. Lett. A. 372, 4601-4602.
[48] Triki, H., Wazwaz, A.M. (2009). Bright and dark soli- ton solutions for a K(m, n) equation with t-dependent coe伍cients. Phys. Lett. A. 373, 2162–2165.
[49] Bekir, A., Guner, O. (2013). Bright and dark soliton solutions of the (3+1)-dimensional general- ized Kadomtsev–Petviashvili equation and generalized Benjamin equation. Pramana J. Phys. 81, 203.
[50] Triki, H., Milovic, D. and Biswas, A. (2013). Solitary waves and shock waves of the KdV6 equation. Ocean Engineering. 73, 119–125.
[51] Younis, M. and Ali, S. (2015). Bright, dark, and sin- gular solitons in magneto-electro-elastic circular rod. Waves in Random and Complex Media. 25(4), 549- 555.
[52] Bekir, A. and Guner, O. (2013). Topological (dark) soliton solutions for the Camassa–Holm type equa- tions. Ocean Engineering. 74, 276–279.
[53] Abdel-Salam, E.A.B., Hassan, G.F. (2016). Solutions to class of linear and nonlinear fractional diferential equations. Commun. Theor. Phys.. 65, 127–135.
[54] Peregrine, D.H. (1966). Calculations of the develop- ment of an undular bore. J. Fluid Mech. 25, 321–330.
[55] Peregrine, D.H. (1967). Long waves on a beach. J. Fluid Mech. 27, 815–827.
[56] Benjamin, T.B., Bona, J.L. and Mahony, J. (1972). Model equations for waves in nonlinear dispersive sys-tems. J. Philos. Trans. R. Soc. Lond. 227, 47–78.
[57] Abdel-Salam, E.A.B., Yousif, E.A. (2013). Solution of nonlinear space-time fractional diferential equations using the fractional riccati expansion method. Mathe- matical Problems in Engineering. 846283.
[58] Esen, A. and Kutluay, S. (2006). Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 833–845.
[59] Dag, I. (2000). Least square quadratic B-spline finite element method for the regularized long wave equa- tion. Comp. Meth. Appl. Mech. Eng. 182, 205–215.
[60] Dag, I. and Ozer, M.N. (2001). Approximation of RLW equation by least square cubic B-spline finite element method. Appl. Math. Model. 25, 221–231.
[61] Saka, B., Dag, I. and Irk, D. (2008). Quintic B- spline collocation method for numerical solutions of the RLW equation. Anziam J. 49(3), 389–410.
[62] Saka, B., Sahin, A., Dag, I. (2011). B-spline collo- cation algorithms for numerical solution of the RLW equation. Numer. Meth. Part. D. E. 27, 581–607.
[63] Yusufoglu, E. and Bekir, A. (2007). Application of the variational iteration method to the regularized long wave equation. Computers and Mathematics with Ap- plications. 54, 1154–1161.
[64] Liu, Y. and Yan, L. (2013). Solutions of fractional Konopelchenko-Dubrovsky and Nizhnik-Novikov- Veselov equations using a generalized fractional subequation method. Abstract and Applied Analysis. 839613.
[65] Hong, T., Wang, Y.Z. and Huo, Y.S. (1998). Bogoli- ubov quasiparticles carried by dark solitonic excita- tions in nonuniform Bose Einstein condensates. Chin. Phys. Lett. 15, 550 552.
[66] Das, G.C. (1997). Explosion of soliton in a multicom- ponent plasma. Phys. Plasmas. 4, 2095-2100.
[67] Lou, S.Y. (1999). A direct perturbation method: Non- linear Schrodinger equation with loss. Chin. Phys. Lett. 16, 659-661.
[68] Shin, B.C., Darvishi, M.T. and Barati, A. (2009). Some exact and new solutions of the Nizhnik Novikov Vesselov equation using the Exp-function method. Computers and Mathematics with Applications. 58, 2147-2151.
[69] Deng, C. (2010). New abundant exact solutions for the (2 + 1)-dimensional generalized Nizhnik–Novikov– Veselov system. Commun Nonlinear Sci Numer Sim- ulat. 15, 3349–3357
[70] Boubir, B., Triki, H. and Wazwaz, A.M. (2013). Bright solitons of the variants of the Novikov–Veselov equa- tion with constant and variable coe伍cients. Applied Mathematical Modelling. 37, 420–431.
[71] Wang, M.L., Li X. and Zhang, J. (2008). The (G′ /G)-expansion method and travelling wave solu- tions of nonlinear evolution equations in mathematical physics. Phys. Lett. A. 372(4), 417-423.