A decoupled Crank-Nicolson time-stepping scheme for thermally coupled magneto-hydrodynamic system
Thermally coupled magneto-hydrodynamics (MHD) studies the dynamics of electro-magnetically and thermally driven flows,involving MHD equations coupled with heat equation. We introduce a partitioned method that allows one to decouple the MHD equations from the heat equation at each time step and solve them separately. The extrapolated Crank-Nicolson time-stepping scheme is used for time discretization while mixed finite element method is used for spatial discretization.We derive optimal order error estimates in suitable norms without assuming any stability condition or restrictions on the time step size. We prove the unconditional stability of the scheme. Numerical experiments are used to illustrate the theoretical results.
[1] Barleon, L., Casal, V., and Lenhart, L. (1991). MHD 丑ow in liquid-metal-cooled blankets. Fusion Engineer- ing and Design, 14(3-4), 401-412.
[2] Davidson, P.A. (1999). Magneto-hydrodynamics in material processing. Annual Review of Fluid Mechan- ics, 31 , 273-300.
[3] DiBenedetto, E. (1993). Degenerate Parabolic Equa- tions, Springer-Verlag, New York.
[4] El-Kaddah, N., Patel, A.D. and Natarajan, T.T.(1995). The electromagnetic filtration of molten alu- minum using an induced-current separator. Journal of the Minerals, Metals and Materials Society, 47, 46-49.
[5] Ervin, V.J. and Heuer, N. (2004). Approximation of time-dependent, viscoelastic 丑uid 丑ow: Crank- Nicolson, finite element approximation. Numer. Meth- ods Partial Diferential Equations, 20(2), 248-283.
[6] Girault, V. and Raviart, P.A. (1986). Finite Element Method for Navier-Stokes Equations, Springer, Berlin.
[7] Gerbeau, J.F. (2000). A stabilized finite element methods for incompressible methods magnetohydro- dynamic equations. Numer. Math., 87, 83-111.
[8] Guermond, J. L. and Minev, P.D. (2003). Mixed finite element approximation of an MHD problem involv- ing conducting and insulating regions: The 3D case. Numer. Methods Partial Diferential Equations, 19(6), 709-731.
[9] Gunzburger, M.D., Meir, A.J. and Peterson, J. (1991). On the existence, uniqueness, and finite element ap- proximation of solutions of the equations of station- ary, incompressible magnetohydrodynamics. Math. Comp., 56(194), 523-563.
[10] Gunzburger, M.D. and Peterson, J. (1983). On con- forming finite element methods for the inhomogeneous stationary Navier-Stokes equations. Numer. Math., 42, 173-194.
[11] Hashizume, H. (2006). Numerical and experimental research to solve MHD problem in liquid-blanket sys- tem. Fusion Engineering and Design, 81(8), 1431- 1438.
[12] Heywood, J.G. and Rannacher, R. (1990). Finite el- ement approximation of the non-stationary Navier- Stokes problem, Part IV: Error for second order time discretization. SIAM Journal of Numerical Analysis, 27(2), 353-384.
[13] Hughes, W. F. and Young, F.J. (1966). The electro- magnetodynamicos of fiuids. Wiley, New York,
[14] Ingram, R. (2013). A new linearly extrapolated Crank- Nicolson time-stepping scheme for the Navier-Stokes equations. Mathematics of Computation, 82(284), 1953-1973.
[15] Julien, K., Knobloch, E. and Tobias, S. (1999). Strongly nonlinear magnetoconvection in three dimen- sions. Physica D, 128, 105-129.
[16] Kherief, K. (1984). Quelques proprietes des equations de la magnetohydrodynamique stationnaires et devo- lution. Th‘ese, Universite de Paris VII.
[17] Layton, W., Tran, H. and Trenchea, C. (2013). Stabil- ity of partitioned methods for magnetohydrodynamics 丑ows at small magnetic Reynolds number. Contemp. Math., 586, 231-238.
[18] Lin, T.F., Gilbert, J.B. and Roy, G.D. (1991). Analy- ses of magnetohydrodynamic propulsion with seawa- ter for underwater vehicles. Journal of Propulsion and Power, 7(6), 1081-1083.
[19] Lifschitz, A.E. (1989). Magnetohydrodynamics and Spectral Theory. Kluwer, Dordrecht.
[20] Meir, A.J. and Schmidt, P.G. (1996). Variational methods for stationary MHD 丑ow under natural inter- face conditions. Nonlinear Analysis, 26(4), 659-689.
[21] Meir, A.J. and Schmidt, P.G. (1999). Analysis and nu- merical approximation of a stationary MHD 丑owprob- lem with nonideal boundary. SIAM J. Numer. Anal., 36(4), 1304-1332.
[22] Monk, P. (2003). Finite Element Methods for Maxwell’s Equations. Oxford University Press.
[23] Prohl, A. (2008). Convergent finite element discretiza- tions of the nonstationary incompressible magneto- hydrodynamics system. M2AN Math. Model. Numer. Anal., 42, 1065-1087.
[24] Rappaz, J. and Touzani, R. (1991). On a two- dimensional magnetohydrodynamic problem. I) mod- elling and analysis. Modelisation mathematique et Analyse numerique, 26(2), 347-364.
[25] Ravindran, S.S. (2015). An extrapolated second or- der backward diference time-stepping scheme for the magnetohydrodynamics system. Numerical Func- tional Analysis and Optimization, submitted.
[26] Schmidt, P.G. (1999). A Galerkin method for time- dependent MHD 丑ow with nonideal boundaries. Com- mun. Appl. Anal., 3(3), 383-398.
[27] Schonbek, M.E., Schonbek, T.P. and Soli, E. (1996). Large-time behaviour of solutions to the magnetohy- drodynamics equations. Math. Ann., 304, 717-756.
[28] Scott, L.R. and Zhang, S. (1990). Finite element inter- polation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54, 483-493.
[29] Sermange, M. and Temam,R. (1983). Some math- ematical questions related to the MHD equations. Comm. Pure Appl. Math., 36, 635-664.
[30] Sherclif, J.A. (1965). A textbook of magnetohydrody- namics. Pergamon Press, Oxford.
[31] Smolentsev, S., Moreau, R., Buhler, L. and Mis- trangelo, C. (2010). MHD thermo丑uid issues of liq- uid metal blankets: Phenomena and advances. Fusion Engineering and Design, 85(7-9), 1196-1205.
[32] Spitzer, K.H., Dubke, M. and Schwertfeger, K. (1986). Rotational electromagnetic stirring in continuous cast- ing of round strands. Metallurgical Transactions B, 17, 119-131.
[33] Tone, F. (2009). On the long-time H2-stability of the implicit Euler scheme for the 2D magnetohydrody- namics equations. J. Sci. Comput., 38, 331-348.
[34] Utech, H.P. and Flemings, M.C. (1967). Thermal con- vection in metal-crystal growth [in tin and aluminium- copper alloys] : Efect of a magnetic field, Proceedings of Internat. Conf. on Crystal Growth, Boston, June 1966, J. Phys. Chem. Solids, (Suppl. 1), 651-658.
[35] WalkerJ, S. (1980). Large interaction parameter mag- netohydrodynamics and applications in fusion reactor technology. Fluid Mechanics in Energy Conversion (J. Buckmaster, ed.), SIAM, Philadelphia.