AccScience Publishing / IJOCTA / Volume 7 / Issue 1 / DOI: 10.11121/ijocta.01.2017.00345
RESEARCH ARTICLE

Assessment and optimization of thermal and fluidity properties of high  strength concrete via genetic algorithm

Barış Şimşek1* Emir H. Şimşek2
Show Less
1 Department of Chemical Engineering, Çankırı Karatekin University, Turkey
2 Department of Chemical Engineering, Ankara University, Turkey
Submitted: 15 May 2016 | Accepted: 26 November 2016 | Published: 22 December 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

, This paper proposes a Response Surface Methodology (RSM) based Genetic  Algorithm (GA) using MATLAB® to assess and optimize the thermal and  fluidity of high strength concrete (HSC). The overall heat transfer coefficient,  slump-spread flow and T50 time was defined as thermal and fluidity properties of  high strength concrete. In addition to above mentioned properties, a 28-day  compressive strength of HSC was also determined. Water to binder ratio, fine  aggregate to total aggregate ratio and the percentage of super-plasticizer content  was determined as effective factors on thermal and fluidity properties of HSC.  GA based multi-objective optimization method was carried out by obtaining quadratic models using RSM. Having excessive or low ratio of water to binder  provides lower overall heat transfer coefficient. Moreover, T50 time of high  strength concrete decreased with the increasing of water to binder ratio and the  percentage of superplasticizer content. Results show that RSM based GA is  effective in determining optimal mixture ratios of HSC.

Keywords
Genetic algorithm
High strength concrete
Optimization
Thermal properties
Conflict of interest
The authors declare they have no competing interests.
References

[1] Yan, S., Lin, H.-C. and Y.-C. Liu, Optimal schedule  adjustments for supplying ready mixed concrete  following incidents. Automation in Construction, 20  (8), 1041-1050 (2011).

[2] Chang, C.Y., Huang, R., Lee, P. C. and Weng, T.L.,  Application of a weighted Grey-Taguchi method for  optimizing recycled aggregate concrete mixtures. Cement and Concrete Composites, 33(10), 1038- 1049 (2011)

[3] Şimşek, B., İç, Y.T. and Şimşek, E.H., A Full  Factorial Design Based Desirability Function  Approach for Optimization of Properties of C 40/50  Concrete Class. Mathematical and Computational  Applications, 18(3), 330 (2013).

[4] Dvorkin, L., Dvorkin, O., Zhitkovsky, V. and  Ribakov, Y., A method for optimal design of steel  fiber reinforced concrete composition. Materials &  Design, 32(6), 3254-3262 (2011). 

[5] Lovato, P.S., Possan, E., Molin, D.C.C.D., Masuero,  A.B. and Ribeiro, J.l.D., Modeling of mechanical  properties and durability of recycled aggregate  concretes. Construction and Building Materials,  26(1), 437-447 (2012).

[6] Mohammed, B.S., Fang, O.C., Anwar Hossain,  K.M. and Lachemi, M., Mix proportioning of  concrete containing paper mill residuals using  response surface methodology. Construction and  Building Materials, 35, 63-68 (2012). 

[7] Olivia, M. and Nikraz, H., Properties of fly ash  geopolymer concrete designed by Taguchi method. Materials & Design, 36, 191-198 (2012).

[8] Şimşek, B., İç,Y.T. and Şimşek, E.H., A TOPSISbased Taguchi optimization to determine optimal  mixture proportions of the high strength selfcompacting concrete. Chemometrics and Intelligent  Laboratory Systems, 125, 18-32 (2013).

[9] Sharma, N., Khanna, R. and Gupta, R.D., WEDM  process variables investigation for HSLA by  response surface methodology and genetic  algorithm. Engineering Science and Technology, an  International Journal, 18(2), 171-177 (2015).

[10] Subramanian, M., Sakthivel, M., Sooryaprakash, K.,  Sudhakaran, R., Optimization of Cutting Parameters  for Cutting Force in Shoulder Milling of Al7075-T6  Using Response Surface Methodology and Genetic  Algorithm. Procedia Engineering, 64, 690-700,  2013. 

[11] Fayyazi, E., Ghobadian, B., Najafi, G.,  Hosseinzadeh, B., Mamat, R. and Hosseinzadeh, J.,  An ultrasound-assisted system for the optimization  of biodiesel production from chicken fat oil using a  genetic algorithm and response surface  methodology. Ultrasonics Sonochemistry, 26, 312- 320 (2015).

[12] Kumar, A., Pathak, A.K. and Guria, C., NPK- 10:26:26 complex fertilizer assisted optimal  cultivation of Dunaliella tertiolecta using response  surface methodology and genetic algorithm. Bioresource Technology, 194, 117-129 (2015). 

[13] Baş, D. and Boyacı, İ.H., Modeling and optimization  II: Comparison of estimation capabilities of response  surface methodology with artificial neural networks  in a biochemical reaction. Journal of Food  Engineering, 78(3), 846-854 (2007). 

[14] Baş, D. and Boyacı, İ.H., Modeling and optimization  I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845(2007). 

[15] Lin, H.C., Su, C.T., Wang, C.C., Chang, B. H. and  Juang, R.C., Parameter optimization of continuous  sputtering process based on Taguchi methods, neural  networks, desirability function, and genetic  algorithms. Expert Systems with Applications, 39  (17), 12918-12925 (2012). 

[16] Şimşek, B., İç, Y.T., Şimşek, E.H., Güvenç, A.B.,  Development of a graphical user interface for  determining the optimal mixture parameters of  normal weight concretes: A response surface  methodology based quadratic programming  approach. Chemometrics and Intelligent Laboratory  Systems, 136, 1-9 (2014).

[17] Şimşek, B., İç, Y.T. and Şimşek, E.H. A RSMBased Multi-Response Optimization Application for  Determining Optimal Mix Proportions of Standard  Ready-Mixed Concrete. Arabian Journal for Science  and Engineering, 41(4), 1435-1450 (2016). 

[18] Basri, M., Rahman, R.N.Z.R.A., Ebrahimpour, A.,  Salleh, A.B., Gunawan, E.R. and Rahman, M.B.A.,  Comparison of estimation capabilities of response  surface methodology (RSM) with artificial neural  network (ANN) in lipase-catalyzed synthesis of  palm-based wax ester. BMC Biotechnology, 7(1), 1- 14 (2007). 

[19] Ortiz Jr, F., Simpson, J. R., Pignatiello, Jr, J.J.,  Heredia-Langner, A., A genetic algorithm approach  to multiple-response optimization. Journal of  Quality Technology, 36(4), 432 (2004). 

[20] Chandwani, V., Agrawal, V. and Nagar, R.,  Modeling slump of ready mix concrete using genetic  algorithms assisted training of Artificial Neural  Networks. Expert Systems with Applications, 42(2),  885-893 (2015)

[21] Dombaycı, Ö.A., The prediction of heating energy  consumption in a model house by using artificial  neural networks in Denizli–Turkey. Advances in  Engineering Software, 41(2), 141-147 (2010). 

[22] Foucquier, A., Robert, S., Suard, F., Stephan, L. and  Jay, A., State of the art in building modelling and  energy performances prediction: A review. Renewable and Sustainable Energy Reviews, 23,  272-288 (2013). 

[23] Lakatos, Á., Investigation Of The Effect Of  Moisture In The Time Lag Of Building Walls With  Different Insulating Materials. Environmental  Engineering And Management Journal, 13(11),  2853-2858 (2014). 

[24] Lee, Y., Choi, M.S., Yi, S.T. and Kim, J.K.,  Experimental study on the convective heat transfer  coefficient of early-age concrete. Cement and  Concrete Composites, 31(1), 60-71 (2009). 

[25] Lennon, T., Designers' Guide to EN 1991-1-2, EN  1993-1-2 and EN 1994-1-2: Handbook for the Fire  Design of Steel, Composite and Concrete Structures  to the Eurocodes. Thomas Telford (2007).

[26] Simsek, B., Simsek, E.H. and Altunok, T. Empirical  and Statistical Modeling of Heat Loss from Surface  of a Cement Rotary Kiln System. Journal of the  Faculty of Engineering and Architecture of Gazi  University, 28(1), 59-66 (2013)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing