Canal surfaces in 4-dimensional Euclidean space
,, , In this paper, we study canal surfaces imbedded in 4-dimensional Euclidean space E 4 . We investigate these surface curvature properties with respect to the variation of the normal vectors and ellipse of curvature. Some special canal surface examples are constructed in E 4 . Furthermore, we obtain necessary and sufficient condition for canal surfaces to become superconformal in E 4 . At the end, we present the graphs of projections of canal surfaces in E 3 .
[1] Arslan, K., Bayram, K. B., Bulca, B. and Ozt¨urk, G., ¨ Generalized rotation surfaces in E 4 . Results in Mathematics, 61, 315-327 (2012).
[2] Bayram, K. B., Bulca, B., Arslan, K. and Ozt¨urk, ¨ G., Superconformal ruled surfaces in E 4 . Mathematical Communications, 14(2), 235-244 (2009).
[3] Chen, B. Y., Geometry of submanifolds. Dekker, New York, (1973).
[4] Dajczer, M. and Tojeiro, R., All superconformal surfaces in R 4 in terms of minimal surfaces. Mathematische Zeitschrift, 261, 869-890 (2009).
[5] Farouki, R.T. and Sverrissor, R., Approximation of rolling-ball blends for free-form parametric surfaces. Computer-Aided Design, 28, 871-878 (1996).
[6] Gal, R.O. and Pal, L., Some notes on drawing twofolds in 4-dimensional Euclidean space. Acta Univ. Sapientiae, Informatica, 1-2, 125-134 (2009).
[7] Gray, A., Modern differential geometry of curves and surfaces. CRC Press, Boca Raton Ann Arbor London Tokyo, (1993).
[8] Mello, L. F., Orthogonal asymptotic lines on surfaces immersed in R 4 . Rocky Mountain J. Math., 39(5), 1597-1612 (2009).
[9] Mochida, D. K. H., Fuster, M.D.C.R and Ruas, M.A.S., The geometry of surfaces in 4-Space from acontact viewpoint. Geometriae Dedicata., 54, 323-332 (1995).
[10] Rouxel, B., Ruled A-submanifolds in Euclidean space E 4 . Soochow J. Math., 6, 117-121 (1980).
[11] Shani, U. and Ballard, D.H., Splines as embeddings for generalized cylinders. Computer Vision,Graphics and Image Processing, 27, 129-156 (1984).
[12] Wang, L., Ming, C.L., and Blackmore, D., Generating sweep solids for NC verification using the SEDE method. Proceedings of the Fourth Symposium on Solid Modeling and Applications, Atlanta, Georgian, May 14-16, 364-375 (1995).
[13] Wong, Y.C., Contributions to the theory of surfaces in 4-space of constant curvature. Trans. Amer. Math. Soc., 59, 467-507 (1946).
[14] Xu, Z., Feng, R. and Sun, JG., Analytic and algebraic properties of canal surfaces. Journal of Computational and Applied Mathematics, 195(1-2), 220-228 (2006).