Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM
In this paper, a class of Nonlinear Programming problem is modeled with gradient based system of fractional order differential equations in Caputo's sense. To see the overlap between the equilibrium point of the fractional order dynamic system and theoptimal solution of the NLP problem in a longer timespan the Multistage Variational ?teration Method isapplied. The comparisons among the multistage variational iteration method, the variationaliteration method and the fourth order Runge-Kutta method in fractional and integer order showthat fractional order model and techniques can be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programming problems.
[1] Luenberger, D.G. and Ye, Y., Linear and Nonlinear Programming, Third Edition, Springer, New York (2008).
[2] Sun, W. and Yuan, Y.X., Optimization The- ory and Methods: Nonlinear Programming, Springer-Verlag, New York (2006).
[3] Arrow, K.J., Hurwicz, L. and Uzawa, H., Studies in Linear and Non-Linear Program- ming, Stanford University Press, California (1958).
[4] Fiacco, A.V. and Mccormick, G.P., Nonlin- ear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York (1968).
[5] Yamashita, H., Diferential equation ap- proach to nonlinear programming. Math. Program., 18, 155-168 (1976).
[6] Botsaris, C.A., Diferential gradient meth- ods. J. Math. Anal. Appl., 63, 177-198 (1978).
[7] Brown, A.A. and Bartholomew-Biggs, M.C., ODE versus SQP methods for constrained optimization. J. Optim. Theory Appl., 62, 371-389 (1989).
[8] Evtushenko, Y.G. and Zhadan, V.G., Stable barrier-projection and barrier-Newton meth- ods in nonlinear programming. Opt. Soft- ware, 3, 237-256 (1994).
[9] Schropp, J., A dynamical system approach to constrained minimization. Numer. Funct. Anal. Optim., 21, 537-551 (2000).
[10] Wang, S., Yang, X.Q. and Teo, K.L., A uni- fied gradient 丑ow approach to constrained nonlinear optimization problems. Comput. Optim. Appl., 25, 251-268 (2003).
[11] Jin, L., Zhang, L.-W. and Xiao, X., Two diferential equation systems for equality- constrained optimization. Appl. Math. Com- put., 190, 1030-1039 (2007).
[12] Jin, L., A stable diferential equation ap- proach for inequality constrained optimiza- tion problems. Appl. Math. Comput., 206, 186-192 (2008).
[13] Shikhman, V. and Stein, O., Constrained op- timization: projected gradient 丑ows. J. Op- tim. Theory Appl., 140, 117-130 (2009).
[14] O(¨)zdemir, N. and Evirgen, F., A dynamic system approach to quadratic programming problems with penalty method. Bull. Malays. Math. Sci. Soc., 33, 79-91 (2010).
[15] Podlubny, I., Fractional Diferential Equa- tions, Academic Press, New York (1999).
[16] Bulut, H., Baskonu>s, H.M., Belgacem, F.B.M., The analytical solution of some frac- tional ordinary diferential equations by the Sumudu transform method. Abstr. Appl. Anal., Art. ID 203875, 6 pp. (2013).
[17] Baskonu>s, H.M., Mekkaou, T., Hammouch, Z. and Bulut, H., Active control of a chaotic fractional order economic system. Entropy, 17(8), 5771-5783 (2015).
[18] Baskonu>s, H.M., Bulut, H., On the nu- merical solutions of some fractional ordinary diferential equations by fractional Adams- Bashforth-Moulton method. Open Math., 13, 547556 (2015).
[19] Hristov, J., Double integral-balance method to the fractional subdifusion equation: approximate solutions, optimization prob- lems to be resolved and numerical sim- ulations. J. Vib. Control, 1-24, (doi: 10.1177/1077546315622773) (2015).
[20] Y¨uzba>sl, S., A collaction method for numer- ical solutions of fractional-order logistic pop- ulation model. Int. J. Biomath., 9(3), 14pp. (2016).
[21] Atangana, A. and Baleanu, D., Caputo- Fabrizio derivative applied to ground- water 丑ow within confined aquifer. J. Eng. Mech., (doi:10.1061/(ASCE)EM.1943- 7889.0001091) (2016).
[22] O(¨)zdemir, N., Povstenko, Y., Avcl., D. and I(˙)skender, B.B., Optimal boundary control of thermal stresses in a plate based on time- fractional heat conduction equation. Journal of Thermal Stresses, 37(8), 969-980 (2014).
[23] I(˙)skender, B.B., O(¨)zdemir, N., Karaoyglan,A.D., Parameter optimization of fractional order PIλ Dμ controller using response surface methodology. Discontinuity and Complex- ity in Nonlinear Physical Systems, Springer, Eds. Machado, J. A.T., Baleanu, D., Luo, A.C.J., 91-105 (2014).
[24] He, J.H., Variational iteration method for delay diferential equations. Commun. Non- linear Sci. Numer. Simul., 2, 235-236 (1997).
[25] He, J.H., Approximate analytical solution for seepage 丑ow with fractional derivative in prous media. Comput. Methods Appl. Mech. Eng., 167, 57-68 (1998).
[26] Odibat, Z.M. and Momani, S., Application of variational iteration method to Nonlinear diferential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul., 7, 27-34 (2006).
[27] Momani, S. and Odibat, Z.M., Numerical approach to diferential equations of frac- tional order. J. Comput. Appl. Math., 207, 96-110 (2007).
[28] Batiha, B., Noorani, M.S.M., Hashim, I. and Ismail, E.S., The multistage variational iter- ation method for a class of nonlinear system of ODEs. Phys. Scr., 76, 388-392 (2007).
[29] G¨okdo˜gan, A., Merdan, M. and Ert¨urk, V.S., A multistage variational iteration method for solution of delay diferentialequa- tions. Int. J. Nonlinear Sci. Numer. Simul., 14(3-4), 159-166 (2013).
[30] Wu, G-C. and Lee, E.W.M., Fractional vari- ational iteration method and its application. Phys. Lett. A., 374, 2506-2509 (2010).
[31] Wu, G-C., A fractional variational iteration method for solving fractional nonlinear difer- ential equations. Comput. Math. Appl., 61, 2186-2190 (2011).
[32] Wu, G-C. and Baleanu, D., Variational it-eration method for the Burgers’ 丑ow with fractional derivatives—new Lagrange multi- pliers. Appl. Math. Model., 37, 6183-6190 (2013).
[33] Yang, X.J. and Zhang, F-R., Local frac- tional variational iteration method and its al- gorithms. Advances in Computational Math- ematics and its Applications, 1(3), 139-145 (2012).
[34] Yang, X.J. and Baleanu, D., Fractal heat conduction problem solved by local fractional variation iteration method. Thermal Science, 17(2), 625-628 (2013).
[35] Matinfar, M., Saeidy, M. and Ghasemi, M., The combined Laplace-variational iteration method for partial diferential equations. Int. J. Nonlinear Sci. Numer. Simul., 14(2), 93- 101 (2013).
[36] He, J.H., Variational iteration method - a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech., 34, 699- 708 (1999).
[37] Evirgen, F. and O(¨)zdemir, N., Multistage Adomain decomposition method for solving NLP problems over a nonlinear fractional dy- namical system. J. Comput. Nonlinear Dyn., 6, 021003 (2011).
[38] Evirgen, F. and O(¨)zdemir, N., A fractional order dynamical trajectory approach for opti- mization problem with HPM. Fractional Dy- namics and Control, Springer, Eds. Baleanu, D., Machado, J.A.T., Luo, A.C.J., 145-155 (2012).
[39] Sweilam, N.H., Khader, M.M. and Mahdy, A.M.S., Computational methods for frac- tional diferential equations generated by op- timization problem. J. Fract. Calc. Appl., 3, 1-12 (2012).
[40] Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S., Numerical study for the fractional diferential equations generated by optimiza- tion problem using Chebyshev collocation method and FDM. Appl. Math. Inf. Sci., 7, 2011-2018 (2013).
[41] Khader, M.M., A new fractional Chebyshev FDM: an application for solving the frac- tional diferential equations generated by op- timisation problem. Internat. J. Systems Sci., 46(14), 2598-2606 (2015).
[42] Hock, W. and Schittkowski, K., Test Ex- amples for Nonlinear Programming Codes, Springer-Verlag, Berlin (1981).
[43] Schittkowski, K., More Test Examples For Nonlinear Programming Codes, Springer, Berlin (1987).