AccScience Publishing / IJOCTA / Volume 5 / Issue 2 / DOI: 10.11121/ijocta.01.2015.00238
APPLIED MATHEMATICS & CONTROL

A research on adaptive control to stabilize and synchronize  a hyperchaotic system with uncertain parameters

Israr Ahmad1* Azizan Bin Saaban2 Adyda Binti Ibrahim3 Said Al-Hadhrami4 Mohammad Shahzad5 Sharifa Hilal Al-Mahrouqi6
Show Less
1 School of Quantitative Sciences, College of Arts & Sciences, UUM, Malaysia
2 School of Quantitative Sciences, College of Arts & Sciences, UUM, Malaysia
3 School of Quantitative Sciences, College of Arts & Sciences, UUM, Malaysia
4 College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman
5 College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman
6 College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman
Submitted: 20 November 2014 | Published: 18 June 2015
© 2015 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper addresses the chaos control and synchronization problems of a hyperchaotic  system. It is assumed that the parameters of the hyperchaotic system are unknown and the system is  perturbed by the external disturbance. Based on the Lyapunov stability theory and the adaptive control  theory, suitable nonlinear controllers are designed for the asymptotic stability of the closed-loop  system both for stabilization of hyperchaos at the origin and complete synchronization of two identical  hyperchaotic systems. Accordingly, suitable update laws are proposed to estimate the fully uncertain  parameters. All simulation results are carried out to validate the effectiveness of the theoretical  findings. The effect of external disturbance is under our discussion

Keywords
Adaptive control;chaos stabilization;synchronization;Lyapunov stability theory;hyperchaotic system.
Conflict of interest
The authors declare they have no competing interests.
References

[1] H. K. Khalil, Nonlinear Systems. 3rd ed.  Prentice Hall, Englewood Cliffs, NJ (2002).

[2] Lorenz, E., Deterministic nonperiodic flow.  Journal of the Atmospheric Sciences, 20(2),  130–141 (1963).

[3] Andrievskii, B. R., Fradkov, A. l., Control of  Chaos: Methods and Applications. Automation  and Remote Control, 65(4), 505-533 (2004).

[4] Aghababa, M. P., Fractional modeling and  control of a complex nonlinear energy supplydemand system. Complexity, doi:  10.1002/cplx.21533 (2014).

[5] Vaidyanathan, S., Rajagopal, K., AntiSynchronization of Tigan and Li Systems with  Unknown Parameters via Adaptive Control. An  International Journal of Optimization and Control: Theories & Applications, 2(1), 17-28  (2012).

[6] Ahmad, I., Saaban, A., Ibrahim, A., Shahzad,  M., Global Chaos Synchronization of New  Chaotic System using Linear Active Control.  Complexity, doi: 10.1002/cplx.21573 (2014).

[7] Aghababa, M. P., Aghababa, H. P., Synchronization of nonlinear chaoticelectromechanical gyrostat systems with  uncertainties. Nonlinear Dynamics 67, 2689- 2701 (2012).

[8] Jia, N., Wang, T., Generation and Modified  projective Synchronization for a class of New  Hyperchaotic Systems. Abstract and Applied  Analysis, Article ID 804964, 11 pages (2013).

[9] Shi, X., Wang, Z., Hybrid synchronization  phenomenon in two coupled delay hyperchaotic  Lorenz systems with unknown parameters via a  single linear controller. Journal of Vibrational  and Control, 19(7), 1051-1060 (2013).

[10]Pai, N. S., Yau, H. T., Hybrid synchronization  phenomenon in two coupled delay hyperchaotic  Lorenz systems with unknown parameters via a  single linear controller. Journal of Vibrational  and Control, 17(1) 11-17 (2010).

[11]Al-Hadhrami, S., Saaban, A., Ibrahim, A.,  Shazad, M., Ahmad, I., Linear Active Control  Algorithm to Synchronize a Nonlinear  HIV/AIDS Dynamical System. Asian Journal  of Applied Sciences and Engineering, 3(2), 96- 115 (2014).

[12]Ojo, K. S., Njah, A. N., Ogunjo, O.,  Comparison of backsteeping and modified  active control in projective synchronization of  chaos in an extended Bonhoffer-van der Pol  Oscillator. Pranam Journal of Physics, 80(5),  825-835 (2013).

[13]Njah, A. N., Synchronization and Antsynchronization of double hump Duffing-Van  der Pol Oscillator via Active Control. Journal  of Information and Computer Science, 4(4),  243-250 (2009).

[14]Idowu, B. A., Vincent, U. E., Synchronization  and stabilization of Chaotic Dynamics in  Quasi-1D Bose-einstein Condensate. Journal of  Chaos, (2013).

[15]Khan, A., Shahzad, M., Synchronization of  circular restricted three body problem with  Lorenz hyper chaotic system using a robust  adaptive sliding mode controller. Complexity,  18, 58-64 (2013).

[16]Zhao, J., Zhou, D., Li, Y., A new impulsive  synchronization of Chen hyper-chaotic system  and Lü hyper-chaotic system. Journal of  Vibration and Control, 19(12), 1773-1778 (2013).

[17]Park, J. H., Adaptive control for modified  projective synchronization of a fourdimensional chaotic system with uncertain  parameters. Journal of Computational and  Applied mathematics, 213, 288-293 (2008).

[18]Ahmad, I., Saaban, A., Ibrahim, A., Shahzad,  M., Chaos Control and Synchronization of  Chaotic System Based upon Adaptive ControlAlgorithm, Int. Journal of Advances in Tel.  comm. Electronics, Signals & Systems, 3(2),  53-62 (2014).

[19]Ying-ying, M., Yun-gang, L., Barbalat’s  Lemma and its application in analysis of  system stability. Journal of Shandong  University of Technology, 37(1), 51-55 (2007)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing