AccScience Publishing / IJOCTA / Volume 5 / Issue 2 / DOI: 10.11121/ijocta.01.2015.00244
OPTIMIZATION & APPLICATIONS

A hybrid PSO-PID approach for trajectory tracking application of a liquid level control process

Türker Tekin Ergüzel1
Show Less
1 Department of Computer Engineering, Uskudar University, Turkey
Submitted: 3 February 2015 | Published: 9 June 2015
© 2015 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Water level control is a crucial step for steam generators (SG) which are widely used to  control the temperature of nuclear power plants. The control process is therefore a challenging task to  improve the performance of water level control system. The performance assessment is another  consideration to underline. In this paper, in order to get better control of water level, the nonlinear  process was first expressed in terms of a transfer function (TF), a proportional-integral-derivative  (PID) controller was then attached to the model. The parameters of the PID controller was finally  optimized using particle swarm optimization (PSO). Simulation results indicate that the proposed  approach can make an effective tracking of a given level set or reference trajectory.

Keywords
Water level control; PID controller; particle swarm optimization; transfer function
Conflict of interest
The authors declare they have no competing interests.
References

[1] Zhang, Z., Performance assessment for the  water level control system in steam generator  of the nuclear power plant, Annals of Nuclear  Energy 45, 94–105 (2012).

[2] Irving, E., Miossec, C., Tassart, J., Towards  efficient full automatic operation of the PWR  steam generator with water level adaptive  control. In: Proceedings of the 2nd  International Conference on Boiler Dynamics  and Control in Nuclear Power Stations,  London, 309–29 (1980).

[3] Na, M.G., No, H.C., Design of an adaptive  observer-based controller for the water level of  steam generators. Nuclear Engineering and  Design, 135(3), 379–94 (1992).

[4] Parlos, A.G., Rais O.T., Nonlinear control of  U-tube steam generators via H∞ control.  Control Engineering Practice,8,921–36 (2000).

[5] Kothare, M.V., Mettler, B., Morari,  control in the steam generator of a nuclear  M., Level  power plant. IEEE Control Systems  Technology 8(1), 55–69 (2000).

[6] Na, M.G., Sim, Y.R., Joon, L.Y., Design of an  adaptive predictive controller for steam  generators. IEEE Transactions Nuclear  Science 50(1), 186–93 (2003).

[7] Cho, B.H., No, H.C., Design of a geneticfuzzy controller for the nuclear steam  generator water level control. IEEE  Transactions Nuclear Science 45(4), 2261–71  (1998).

[8] Munasinghe, S.R., Kim, M.S., Lee, J.J.,  Adaptive neurofuzzy controller to regulate  UTSG water level in nuclear power plants.  IEEE Transactions Nuclear Science 52(1),  421–9 (2005).

[9] Hu, K., Yuan, J., Multi-model predictive  control method for nuclear steam generator  water level, Energy Conversion and  Management 49, 1167–1174 (2008).

[10] Mohamed, I., Statistical analysis of neural  network modeling and identification of  nonlinear systems with memory,IEEE  Transections on Signal Processing, 50(6)  (2002).

[11] Zhang, Y., Enhanced statistical analysis of  nonlinear processes using KPCA, KICA and  SVM, Chemical Engineering Science, 64, 801- 811 (2009).

[12] Jiang, C., Deng, M., Inoue, A., Operator based  Nonlinear Control Design for a Water Level  Process System, Proceedings of the 17th  World Congress The International Federation  of Automatic Control Seoul, Korea, July 6-11  (2008).

[13] Ch, S., Anand, N., Panigrahi, B., Streamflowforecasting by SVM with quantum behaved  particle swarm optimization, Neurocomputing,  101, 18–23 (2013).

[14] Prexian, L, Zhixiang T.,Lili Y., A method to  calculate displacement factors using SVM,  Mining Science and Technology (China) 21,  307–311 (2011).

[15] Gunawardena, Y., Ilic, S., Pinkerton, H.,  Nonlinear transfer function modelling of beach  morphology at Duck, North Carolina, Coastal  Engineering, 56, 46–58 (2009).

[16] Towill, D.R., Transfer function techniques for  control engineers. Iliffe Books, London,  (1970).

[17] Mikles, J., Fikar, M., Process modelling,  identification, and control. Springer, Berlin;  NY, (2007).

[18] Sayyafzadeh, M., Pourafshary, P., Application  of transfer functions to model water injection  in hydrocarbon reservoir, Journal of Petroleum  Science and Engineering, 78, 139-148 (2011).

[19] Muhammad, M.I., Wang, L., Fei, M., Pan, H.,  Comparative performance analysis of various  binary coded PSO algorithms in multivariable  PID controller design, Expert Systems with  Applications, 39, 4390–4401 (2012).

[20] Bingul, Z., A new PID tuning technique using  differential evolution for unstable and  integrating processes with time delay.  InICONIP, proceedings lecture notes in  computer science. 3316, 254–260 (2004).

[21] Chang, W.D. A multi-crossover genetic  approach to multivariable PID controllers  tuning.Expert Systems with Applications, 33,  620–626 (2007).

[22] Chang, W.D. PID control for chaotic  synchronization using particle swarm  optimization.Chaos, Solitons and Fractals,  39(2), 910–917 (2009).

[23] Chen, B.S., Cheng, Y.M., A genetic approach  to mixed H2/H1 optimal PID control.IEEE  Control Systems, 15(5), 51–60 (1995).

[24] Coelho, L. S., Bernert, D.L., PID control  design for chaotic synchronization using tribes  optimization approach. Chaos, Solitons and  Fractals, 42(1), 634–640 (2009).

[25] Duan, H., Wang, D., Yu, X., Novel approach  to nonlinear PID parameter optimization using  ant colony optimization algorithm. Journal of  Bionic Engineering, 3(2), 73–78 (2006).

[26] Kim, T. H., Maruta, I., & Sugie, M.. RobustPID controller tuning based on the constrained  particle swarm optimization.Automatica,  44(4), 1104–1110 (2008).

[27] Mukherjee, V., Goshal, S.P., Particle swarm  optimized fuzzy PID controller for AVR  system.Electric Power System Research,  77(12), 1689–1698 (2007).

[28] Zhang, J., Zhuang, J., Du, H., & Wang, S.  Self-organizing genetic algorithm based tuning  of PID controllers.Information Sciences,  179(7), 1007–1018 (2009).

[29] Rudy, J., Dominik, A., Solving multi-objective  job shop problem using nature-based  algorithms: new Pareto approximation  features, An International Journal of  Optimization and Control: Theories &  Application (IJOCTA), 5 (1), 35-43 (2015).

[30] Tran, V.T., Kazushi, S., Genetic algorithm for  optimization in adaptive bus signal priority  control, An International Journal of  Optimization and Control: Theories &  Application (IJOCTA), 3 (1), 1-11 (2013).

[31] Salem, M., Khelfi M., Optimization of  nonlinear controller with an enhanced  biogeography approach An International  Journal of Optimization and Control: Theories  & Application (IJOCTA), 4(2), 77-87 (2014).

[32] Bassi, S.J., Mishra, M.K., Omizegba, E.E.,  Automatic tuning of proportional-integral– derivative controller using particle swarm  optimization algorithm, IJAIA, 2, 4 (2011).

[33] Zhao, S.Z., Suganthan, P.N., Diversity  enhanced particle swarm optimizer for global  optimization of multimodal problems. IEEE  Congress on Evolutionary Computation, 590– 597 (2009).

[34] Baskar, S., Suganthan, P.N., A novel  concurrent particle swarm optimization.  InCongress on evolutionary computation,  CEC2004, 1,792–796 (2004).

[35] Van den Bergh, F., Engelbrecht, A.P., A  Cooperative approach to particle swarm  optimization. IEEE Transactions on  Evolutionary Computation, 8(3), 225–239  (2004).

[36] Ahmed, A., Imtiaz, S., James, L., Designing  Laboratory Procedures to Enhance Graduate  Attributes, Proc. of Canadian Engineering  Education Association (CEEA13) Conference  (2013).

[37] Topuz, V., Fuzzy-Genetic Process Control,  Thesis (PhD). Marmara University (2002).

[38] Erguzel, T.T., Fuzzy controller parameter  tuning using ant colony optimization and  genetic algorithms, Thesis (PhD). Marmara  University (2010).

[39] Lieslehto J., PID controller tuning using  Evolutionary programming, American Control  Conference, V.A., 25-27 (2001).

[40] Osman, M., Infis, A., Abied, W., Elfandi, S.,  Tuning PID Controller Based On the SWARM  Intelligence, Int.ernational Conf. on  Innovations in Engineering and Technology  Bangkok (2013).

[41] Zeng, G.Q., Chen. J., Chen, M.R., Design of  multivariable PID controllers using real-coded  population-based extremal optimization,  Neurocomputing 151, 1343–1353 (2015).

[42] Soomro, W.A., Elamvazuthi, I., Khan, A., PID  Controller Optimization using Artificial Fish  Swarm Algorithm, International Journal of  Electrical and Electronics Research (IJEER)  1,11-18 (2013).

[43] Ding, J., Liu, J., Chowdhury, K.R., Zhang, W.,  Hu, Q., A Particle Swarm Optimization using  Local Stochastic Search and Enhancing  Diversity for Continuous Optimization,  Neurocomputing 137, 261-267 (2014).

[44] Vargas, D.E., Gutierrz, D., Arevalo I.L.,  Performance of different metaheuristics in  EEG source localization compared to the  Cramér–Rao bound, Neurocomputing 120,  597–609 (2013).

[45] Chen, F., Tang, B., Song, T., Li, L., Multifault diagnosis study on roller bearing based  on multi-kernel support vector machine with  chaotic particle swarm optimization,  Measurement 47, 576-590 (2014).

[46] Clerc, M., L’optimisation par Essaim  Particulaire: Versions Parame ´triques et  Adaptatives, Hermes Science Publications,  Lavoisier, Paris (2005).

[47] Killani, R., Rao, K.S., Satapathy, S., Effective  document clustering with particle swarm  optimization, in: B.K. Panigrahi et al. (Eds.):  LNCS 6466, Proceedings of SEMCCO 2010,  Springer-Verlag, Berlin/Heidelberg: 623–629  (2010).

[48] Liu, H., Abraham, A., Zhang, W., A fuzzy  adaptive turbulent particle swarm  optimization, International Journal of  Innovative Computing and Applications  Archive 1,1 (2007).

[49] Nouaouria, N., Boukadoum, M., Proulx, R.,Particle swarm classification: A survey and  positioning, Pattern Recognition 46, 2028– 2044 (2013).

[50] Garcia, N.P., Gonzalo, E.G., Fernandez, A.,  Muniz, C.D., Hybrid PSO–SVM-based  method for long turbidity in the Nalón river basin: A case  -term forecasting of  study in Northern Spain, Ecological  Engineering, 73, 192–200 (2014).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing