AccScience Publishing / IJOCTA / Volume 2 / Issue 1 / DOI: 10.11121/ijocta.01.2012.0059
APPLIED MATHEMATICS & CONTROL

Road Traffic Noise Prediction with Neural Networks-AReview

Kranti KUMAR1 Manoranjan PARIDA2 Vinod K. KATIYAR3
Show Less
1 Department of Mathematics, Indian Institute of Technology Roorkee – India
2 Department of Civil Engineering, Indian Institute of Technology Roorkee – India
3 Department of Mathematics, Indian Institute of Technology Roorkee – India
Submitted: 6 June 2011 | Published: 22 December 2011
© 2011 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper aims to summarize the findings of research concerning the application of neural  networks in traffic noise prediction. Modeling and prediction of traffic noise by means of classical  approaches is a very complex and nonlinear process, due to involvement of several factors on which  noise level depends. To overcome these problems, researchers and acoustical engineers have applied  the artificial neural network in the field of traffic noise prediction. After a critical review of various  neural network based models developed for road traffic noise prediction cited in the literature it was  concluded that ANN based models were capable of predicting traffic noise more accurately and  effectively as compared to deterministic and statistical models

Keywords
Artificial neural networks
Traffic noise
Deterministic and statistical models
Conflict of interest
The authors declare they have no competing interests.
References

[1] Calixto, A., Diniz, F.B. and Zannin P.H.T.,  The statistical modeling of road traffic noise in  an urban setting. Cities, 20 (1), 23-29 (2003).

[2] Ljungberg, J.K. and Neely, G., Stress, subjective experience and cognitive  performance during exposure to noise and  vibration. Journal of Environmental  Psychology, 27 (1), 44-54 (2007).

[3] Babisch, W., Fromme, H., Beyer, A. and Ising,  H., Increased catecholamine levels in urine in  subjects exposed to road traffic noise: The role  of stress hormones in noise research.  Environment International, 26 (7-8), 475-481  (2001).

[4] Pirreera, S., Valck, E.D. and Cluydts, R.,  Nocturnal road traffic noise: A review on its  assessment and consequences on sleep and  health. Environment International, 36 (5), 492- 498 (2010).

[5] Graham, J.M.A., Janssen, S.A., Vos, H. and  Miedema, H.M.E., Habitual traffic noise at  home reduces cardiac parasympathetic toneduring sleep. International Journal of  Psychophysiology, 72 (2), 179-186 (2009).

[6] Rylander, R, Physiological aspects of noiseinduced stress and annoyance. Journal of  Sound and Vibration, 277 (3), 471-478 (2004).

[7] Ohrstrom, E. and Rylander, R., Sleep  disturbance by road traffic noise-A laboratory  study on number of noise events. Journal of  Sound and Vibration, 143 (1), 93-101 (1990). 

[8] Brown, A.L. and Macdonald, G.T., From  environmental impact assessment to  environmental design and planning. Australian  Journal of Environmental Management, 2, 65- 77 (2003).

[9] highway traffic noise prediction m Barry, T.M. and Reagan, J.A., FHWA  odel, Report  No. FHWA-RD-77-108, US DOT, FHWA,  Office of Research, Office of Environmental Policy, Washington DC, USA (1979).

[10] Verification of Prediction Models (DOT Anon., Highway Noise Measurements for  -TSCOST-78-2/DOT-TSC-FHWA-78-1), Federal  Highway Administration, Washington (1978).

[11] United Kingdom Departmen Anon., Calculation of Road Traffic Noise t of the  ,  Environment and Welsh office Joint  Publication/HMSO, London (1975).

[12] of Road Traffic San Francisco Koyasu, M., Method of Prediction and Control  (1978). Noise in Japan, Inter-noise, 

[13] Methods for Road Traffic Noise Propagati Takagi, K., and Yamamota, K., Calculation  on  Proposed by ASJ, Inter-noise, Yokohama (1994).

[14] R.M., Road traffic noise p Rajakumara, H.N. and Mahalinge Gowda,  rediction models: A  Review. International Journal of Sustainability  and Planning, 3 (3), 257-271 (2008).

[15] S.N., Introduction to neural net Sivanandam, S.N., Sumathi, S. and Deepa,  works using  Matlab 6.0. Tata McGraw Hill, New Delhi  (2010).

[16] machines. Phi Learning Private Limited, New  Haykin, S., Neural networks and learning  Delhi (2010)

[17] Wu, S., Neural network applications. National  defence science and technology university  press (In Chinese), Chngsa (1994).

[18] Cammarata, G., Cavalieri, S., Ficbera, A. and  Marietta, L., Noise prediction in urban traffic  by a neural approach. International Workshop  on Artificial Neural Networks, IW, 4NN93(1),  Barcelona, Spain: Sitges, 611-619 (1993).

[19] Cammarata, G., Cavalieri, S., Fichera, A. and  Marletta, L., Neural networks versus  regression techniques for noise prediction in  urban areas. World Congress on Neural Networks, WCNN 93(1), Portland, Oregon,  USA, 237-239 (1993).

[20] Marietta, L., Self Cammarata, G., Cavalieri, S., Fichera, A.and  -organizing map to filter  acoustic mapping survey in noise pollution  analysis. In IJCNN, International Joint  Conference on Neural Networks, Nagoya,  Japan, 2, 2017-2020 (1993).

[21] Cammarata, G., Cavalieri, S. and Fichera, A.,  A neural network architecture for noise  prediction. Neural Networks, 8(6), 963-973  (1995).

[22] Dougherty, M., A review of neural networks  applied to transport. Transportation Research  Part C, 3(4), 247-260 (1995)

[23] noise prediction models.  62, Steele, C., A critical review of some traffic  271-287 (2001). Applied Acoustics,

[24] neural network to the prediction of traffic  Wu, S. and Zhang, J., The application of  noise. International Journal of Acoustics and  Vibration, 5(4), 179-182 (2000).

[25] Ugur, K., Neural network modeling of outdoor  Yasar, A., Arslan, S., Talha, M., Ertan, A. and  noise levels in a pilot area. Turkish Journal of Engineering and Environmental Science,  28, 149-155 (2004).

[26] Zaheeruddin and Garima, A neuro- fuzzy  approach for predicting the effects of noise  pollution on human work efficiency. ICONIP,  947-952 (2004).

[27] Zaheeruddin and Garima, A neuro- fuzzy  approach for prediction of human work  efficiency in noisy environment. Applied SoftComputing, 6, 283–294 (2006).

[28] Assessment and ANN Modeling of Noise  Levels at Major Road Intersections in an  Indian Intermediate City. in Science, Computing, 39 Parabat, D.K. and Nagarnaik, P.B.,  -49 (2007). and Journal of Research  Engineering, 4 (3), 

[29] Parabat, D.K. and Nagarnaik, P.B., Artificial  Neural Network of Road Traffic Noise  Descriptors. First International Conference on  Emerging Trends in Engineering and  Technology, 1017-1021 (2008).

[30] Givargis, S. and Karimi, H., Mathematical,  statistical and neural models capable of  predicting LAmax for the Tehran-Karaj express  train. Applied Acoustics, 70, 1015-1020  (2009).

[31] Genaro, N., Torija, A., Ramos-Ridalo, A.,  Requena, I., Ruiz, D.P. and Zamorano, M.,  Modeling Environmental Noise Using  Artificial Neural Networks. Ninth International  Conference on Intelligent Systems Design and  Application, 215-219 (2009).

[32] Genaro, N., Torija, A., Ramos-Ridao, A.,  Requena, I., Ruiz, D.P. and Zamorano, M., A  neural network based model for urban noise  prediction. Journal of Acoustical Society of  America, 128 (4), 1738-1746 (2010).

[33] Givargis, S. and Karimi, H., A basic neural  traffic noise prediction model for Tehran’s  roads. Journal of Environmental Management, 91, 2529-2534 (2010)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing