AccScience Publishing / IJOCTA / Volume 2 / Issue 1 / DOI: 10.11121/ijocta.01.2012.0076
APPLIED MATHEMATICS & CONTROL

Anti-Synchronization of Tigan and Li Systems with Unknown Parameters  via Adaptive Control

Sundarapandian VAIDYANATHAN1 Karthikeyan RAJAGOPAL2
Show Less
1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University - India
2 School of Electronics and Electrical Engineering, Singhania University - India
Submitted: 29 October 2011 | Published: 21 December 2011
© 2011 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, the adaptive nonlinear control method has been deployed to derive new results  for the anti-synchronization of identical Tigan systems (2008), identical Li systems (2009) and nonidentical Tigan and Li systems. In adaptive anti-synchronization of identical chaotic systems, the  parameters of the master and slave systems are unknown and the feedback control law has been derived  using the estimates of the system parameters. In adaptive anti-synchronization of non-identical chaotic  systems, the parameters of the master system are known, but the parameters of the slave system are  unknown and accordingly, the feedback control law has been derived using the estimates of the  parameters of the slave system. Our adaptive synchronization results derived in this paper for the  uncertain Tigan and Li systems are established using Lyapunov stability theory. Numerical simulations  are shown to demonstrate the effectiveness of the adaptive anti-synchronization schemes for the  uncertain chaotic systems addressed in this paper.

Keywords
Adaptive control
Anti-synchronization
Chaos
Tigan system
Li system.
Conflict of interest
The authors declare they have no competing interests.
References

[1] Alligood, K.T., Sauer, T. & Yorke, J.A.,  Chaos: An Introduction to Dynamical  Systems, Springer, New York (1987).

[2] Lorenz, E., Deterministic nonperiodic flow, J.  Atmos. Sciences, 20, 130-141 (1963).

[3] Pecora, L.M. & Carroll, T.L., Synchronization  in chaotic systems, Phys. Rev. Letters, 64,  821-824 (1990).

[4] Lakshmanan, M. & Murali, K., Chaos in  Nonlinear Oscillators: Controlling and  Synchronization, World Scientific, Singapore  (1996).

[5] Han, S.K., Kerrer, C. & Kuramoto, Y.,  Dephasing and bursting in coupled neural  oscillators, Phys. Rev. Letters, 75, 3190-3193  (1995)

[6] Blasius, B., Huppert, A. & Stone, L.,  Complex dynamics and phase synchronization  in spatially extended ecological system,  Nature, 399, 354-359 (1999).

[7] Cuomo, K.M. & Oppenheim, A.V. Circuit  implementation of synchronized chaos with  applications to communications, Phys. Rev.  Letters, 71, 65-68 (1993).

[8] Li, Z., Li, K., Wen, C. & Soh, Y.C., A new  chaotic secure communication system, IEEE  Trans. Comm, 51 (8), 1306-1312 (2003).

[9] Ott, E., Grebogi, C. & Yorke, J.A., Controlling  chaos, Phys. Rev. Lett., 64, 1196-1199 (1990).

[10] Bai, E.W. & Longren, K.E., Synchronization  of two Lorenz systems using active control,  Chaos, Solit. Fractals, 8, 51-58 (1997).

[11] Ho, M.C. & Hung, Y.C., Synchronization of  two different chaotic systems using  generalized active control, Phys. Lett. A, 301,  424-428 (2002).

[12] Huang, L., Feng, R. & Wang, M.,  Synchronization of chaotic systems via  nonlinear control, Phys. Lett. A, 320, 271-275  (2005).

[13] Lei, Y., Xu, W., Shen, J. & Fang, T., Global  synchronization of two parametrically excited  systems using active control, Chaos Solit.  Fract., 28, 428-436 (2006).

[14] Chen, H.K., Global chaos synchronization of  new chaotic systems via nonlinear control,  Chaos Solit. Fract., 23, 1245-1251 (2005).

[15] Vincent, U.E., Synchronization of identical  and non-identical 4-D systems via active  control, Chaos Solit. Fract., 31, 119-129  (2007).

[16] Sundarapandian, V. & Karthikeyan, R., Global  chaos synchronization of hyperchaotic Liu and  hyperchaotic Chen systems by active nonlinear  control, CIIT Int. J. Digital Signal Processing,  3 (3), 134-139 (2011).

[17] Sundarapandian, V. & Karthikeyan, R., Global  chaos synchronization of Chen and Cai  systems by active nonlinear control, CIIT Int.  J. Digital Signal Processing, 3 (3), 140-144  (2011).

[18] Lu, J., Wu, X., Han, X. & Lü, J., Adaptive  feedback stabilization of a unified chaotic  system, Phys. Lett. A, 329, 327-333 (2004).

[19] Chen, S.H. & Lü, J., Synchronization of an  uncertian unified system via adaptive control,  Chaos Solit. Fract., 14, 643-647 (2002).

[20] Aghababa, M.P. & Aghababa, H.P., Adaptive  finite-time stabilization of uncertain nonautonomous chaotic electromechanical  gyrostat systems with unknown parameters,  Mech. Research Commun., 38, 500-505  (2011).

[21] Aghababa, M.P., A novel adaptive finite-time  controller for synchronizing chaotic gyros withnonlinear inputs, Chinese Phys. B, 20, 090505  (2011).

[22] Aghababa, M.P. & Aghababa, H.P.,  Synchronization of nonlinear chaotic  electromechanical gyrostat systems with  undertainties, Nonlinear Dynamics,  doi:10.1007/s11071-011-0181-5 (2011).

[23] Aghababa, M.P. & Heydari, A., Chaos  synchronization between two different chaotic  systems with uncertainties, external  disturbances, unknown parameters and input  nonlinearities, Applied Math. Modelling,  doi:10.1016/j.apm.2011.09.023 (2011).

[24] Park, J.H. & Kwon, O.M., A novel criterion  for delayed feedback control of time-delay  chaotic systems, Chaos Solit. Fract., 17, 709- 716 (2003).

[25] Yu, Y.G. & Zhang, S.C., Adaptive  backstepping synchronization of uncertain  chaotic systems, Chaos Solit. Fract., 27, 1369- 1375 (2006).

[26] Idowu, B.A., Vincent, U.E. & Njah, A.N.,  Generalized adaptive backstepping  synchronization for non-identical  parametrically excited systems, Nonlinear  Analysis: Modelling and Control, 14 (2), 165- 176 (2009).

[27] Zhao, J. & Lü, J., Using sampled-data  feedback control and linear feedback  synchronization in a new hyperchaotic  system, Chaos Solit. Fract., 35, 376-382  (2006).

[28] Konishi, K., Hirai, M. & Kokame, H., Sliding  mode control for a class of chaotic systems,  Phys. Lett. A, 245, 511-517 (1998).

[29] Haeri, M. & Emazadeh, A.A.,  Synchronization of different chaotic systems  using active sliding mode control, Chaos  Solit. Fract., 119-129 (2007).

[30] Pourmahamood, M., Khanmohammadi, S. &  Alizadeh, G., Synchronization of two  different uncertain chaotic systems with  unknown parameters using a robust adaptive  sliding mode controller, Commun. Nonlinear  Sci. Numerical Simulat., 16, 2853-2868  (2011).

[31] Aghababa, M.P. & Khanmohammadi, S. &  Alizadeh, G., Finite-time synchronization of  two different chaotic systems with unknownparameters via sliding mode technique, Appl.  Math. Model, 35, 3080-3091 (2011).

[32] Tigan, G. & Opris, D., Analysis of a 3D  chaotic system, Chaos Solit. Fract., 36, 1315- 1319 (2008).

[33] Li, X.F., Chlouverakis, K.E. & Xu, D.L.,  Nonlinear dynamics and circuit realization of a  new chaotic flow: A variant of Lorenz, Chen  and Lü, Nonlinear Analysis, 10, 2357-2368  (2009).

[34] Hahn, W., The Stability of Motion, Springer,  New York (1967).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing