AccScience Publishing / IJOCTA / Volume 15 / Issue 1 / DOI: 10.36922/ijocta.1653
RESEARCH ARTICLE

Existence of mild solution for fuzzy fractional differential equation utilizing the Hilfer-Katugampola fractional derivative

Ramaraj Hariharan1 Ramalingam Udhayakumar1*
Show Less
1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
IJOCTA 2025, 15(1), 80–89; https://doi.org/10.36922/ijocta.1653
Submitted: 30 July 2024 | Accepted: 19 December 2024 | Published: 24 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper explores the existence of mild solutions for fuzzy fractional differential equations involving the Hilfer-Katugampola fractional derivative. This derivative generalizes classical fractional derivatives, such as the Riemann- Liouville and Hadamard derivatives, offering a broader framework for fractional calculus. The existence conditions for mild solutions are established using fractional calculus, semigroup theory, and Schauder’s fixed point theorem. An example is provided to demonstrate the theoretical applications of the main results.

Keywords
Fuzzy fractional differential equation
Semigroup
Hilfer-Katugampola fractional derivative
Mild solution
Fixed point theory
Funding
None.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References

[1] Zhou, Y. (2023). Basic theory of fractional differential equations. World scientific.

 

[2] Ma, Y. K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., & Nisar, K. S. (2023). Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions. Ain shams Engineering journal, 14(3), 101882. https://doi.org/10.1016/j.asej.2022.101882

 

[3] Nandhaprasadh, K., & Udhayakumar, R. (2024). Hilfer Fractional Neutral Stochastic Differential Inclusions with Clarke’s Subdifferential Type and fBm: Approximate Boundary Controllability. Contemporary Mathematics, 1013-1035. https://doi.org/10.37256/cm.5120243580

 

[4] Varun Bose, C. S., & Udhayakumar, R. (2022). A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Mathematical Methods in the Applied Sciences, 45(5), 2530-2541. https://doi.org/10.1002/mma.7938

 

[5] Sivasankar, S., Udhayakumar, R., Muthukumaran, V., Gokul, G., & Al-Omari, S. (2024). Existence of Hilfer fractional neutral stochastic differential systems with infinite delay. Bulletin of the Karaganda University. Mathematics series, 113(1), 174-193. https://doi.org/10.31489/2024m1/174-193

 

[6] Kilbas, A. A. (2006). Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204.

 

[7] Miller, K.S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Differential Equations. John Wiley, NewYork.

 

[8] Lakshmikantham, V., Leela, S., & Devi, J. V. (2009). Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers.

 

[9] Abu Arqub, O. (2017). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm– Volterra integrodifferential equations. Neural Computing and Applications, 28, 1591-1610. https://doi.org/10.1007/s00521-015-2110-x

 

[10] Abu Arqub, O., Singh, J., & Alhodaly, M. (2023). Adaptation of kernel functions-based approach with Atangana–Baleanu–Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations. Mathematical Methods in the Applied Sciences, 46(7), 7807-7834. https://doi.org/10.1002/mma.7228

 

[11] Katugampola, U. N. (2011). A new approach to generalized fractional derivatives. arXiv preprint arXiv:1106.0965. https://doi.org/10.48550/arXiv.1106.0965

 

[12] Hilfer, R. (Ed.). (2000). Applications of Fractional Calculus in Physics. World scientific.

 

[13] Gu, H., & Trujillo, J. J. (2015). Existence of mild solution for evolution equation with Hilfer fractional derivative. Applied Mathematics and Computation, 257, 344-354. https://doi.org/10.1016/j.amc.2014.10.083

 

[14] Oliveira, D. S., & De Oliveira, E. C. (2018). Hilfer– Katugampola fractional derivatives. Computational and Applied Mathematics, 37(3), 3672-3690. https://doi.org/10.1007/s40314-017-0536-8

 

[15] Bede, B., & Stefanini, L. (2013). Generalized differentiability of fuzzy-valued functions. Fuzzy sets and systems, 230, 119-141. https://doi.org/10.1016/j.fss.2012.10.003

 

[16] Chang, S. S., & Zadeh, L. A. (1972). On fuzzy mapping and control. IEEE transactions on systems, man, and cybernetics, (1), 30-34. https://doi.org/10.1109/TSMC.1972.5408553

 

[17] Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 72(6), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029

 

[18] Abu Arqub, O., Singh, J., Maayah, B., & Alhodaly, M. (2023). Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag–Leffler kernel differential operator. Mathematical Methods in the Applied Sciences, 46(7), 7965-7986. https://doi.org/10.1002/mma.7305

 

[19] Arshad, S. (2013). On existence and uniqueness of solution of fuzzy fractional differential equations. Iranian Journal of Fuzzy Systems, (2013) (10), 137-151. https://doi.org/10.22111/IJFS.2013.1336

 

[20] Allahviranloo, T., Armand, A., & Gouyandeh, Z. (2014). Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. Journal of Intelligent & Fuzzy Systems, 26(3), 1481-1490. https://doi.org/10.3233/IFS-130831

 

[21] Zhu, Y., Rao, L. (2000). Differential inclusions for fuzzy maps.Fuzzy Sets Systems, 112, 257-261. https://doi.org/10.1016/S0165-0114(98)00077-3

 

[22] Chen, X., Gu, H., & Wang, X. (2020). Existence and uniqueness for fuzzy differential equation with Hilfer–Katugampola fractional derivative. Advances in Difference Equations, 2020, 1- 16. https://doi.org/10.1186/s13662-020-02696-9

 

[23] Chen, M., Fu, Y., Xue, X., &Wu, C. (2008). Twopoint boundary value problems of undamped uncertain dynamical systems. Fuzzy Sets and Systems, 159(16), 2077-2089. https://doi.org/10.1016/j.fss.2008.03.006

 

[24] Katugampola, U. N. (2011). New approach to a generalized fractional integral. Applied mathematics and computation, 218(3), 860-865. https://doi.org/10.1016/j.amc.2011.03.062

 

[25] Pandey, R., Shukla, C., Shukla, A., Upadhyay, A., & Singh, A. K. (2023). A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), 130-138. https://doi.org/10.11121/ijocta.2023.1256

 

[26] Sahijwani, L., & Sukavanam, N. (2023). Approximate controllability for Riemann-Liouville fractional differential equations. International Journal of Optimization & Control: Theories & Applications (IJOCTA), 13(1). https://doi.org/10.11121/ijocta.2023.1178

 

[27] Ghazouani, A. Z. I. Z., Amir, F. I. A., Elomari, M. H., & Melliani, S. (2023). On the existence and uniqueness of fuzzy mild solution of fractional evolution equations. Kragujevac Journal of Mathematics, 49(6), 949-966. https://doi.org/10.46793/KgJMat2506.949G

 

[28] Sene, N., & Ndiaye, A. (2024). Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 208-219. https://doi.org/10.11121/ijocta.1464

 

[29] Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K. S., Shukla, A., Abdel-Aty, A. H., ... & Mahmoud, E. E. (2022). A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality. Results in Physics, 38, 105647. https://doi.org/10.1016/j.rinp.2022.105647

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing