AccScience Publishing / IJOCTA / Volume 15 / Issue 1 / DOI: 10.36922/ijocta.1702
RESEARCH ARTICLE

On a robust stability criterion in the Cattaneo–Hristov diffusion equation

Raúl Temoltzi- Ávila1 Javier Temoltzi-Avila2*
Show Less
1 Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Pachuca–Tulancingo Km 4.5, Mineral de la Reforma, 42184, Hidalgo, México
2 Área Industrial Eléctrica y Electrónica, Universidad Tecnológica del Norte de Guanajuato, Avenida Educación Tecnológica, 34, Fracc. Universidad, Dolores Hidalgo C. I. N., 37800, Guanajuato, México
IJOCTA 2025, 15(1), 90–100; https://doi.org/10.36922/ijocta.1702
Submitted: 7 October 2024 | Accepted: 19 December 2024 | Published: 24 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The aim of this paper is to establish a robust stability criterion in the Cattaneo– Hristov diffusion equation moving over an interval under the influence of heat sources. The robust stability criterion arises as a generalization of the definition of stability under constant-acting perturbations that is employed in systems of differential equations. The criterion obtained allows to ensure that the solution of the Cattaneo–Hristov diffusion equation and its first partial derivatives with respect to the longitudinal axis and with respect to time can be bounded by a constant whose value is defined a priori. The criterion is illustrated by a numerical example.

Keywords
Cattaneo–Hristov diffusion equation
Caputo–Fabrizio fractional derivative
Reachability tube
Robust stability
Funding
None.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References

[1] Bhatter, S., Kumawat, S., Bhatia, B., & Purohit, S. D. (2024). Analysis of COVID-19 epidemic with intervention impacts by a fractional operator. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 261–275. https://doi.org/10.11121/ijocta.1515

 

[2] Li, F. (2023). Incorporating fractional operators into interaction dynamics of a chaotic biological model. Results in Physics, 54(2023), 107052. https://doi.org/10.1016/j.rinp.2023.107052

 

[3] Conejero, J. A., Franceschi, J. & Pic´o-Marco, E. (2022). Fractional vs. ordinary control systems: what does the fractional derivative provide? Mathematics, 10, 2719. https://doi.org/10.3390/math10152719

 

[4] Sun H., Zhang Y., Baleanu D., Chen W. & Chen Y. (2018). A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation 64, 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019

 

[5] Slimane I., Nazir G., Nieto J. & Yaqoob F. (2023). Mathematical analysis of Hepatitis C Virus Infection model in the framework of non-local and non-singular kernel fractional derivative. International Journal of Biomathematics 16(1), 2250064.https://doi.org/10.1142/S179352452250064

 

[6] Khajanchi S., Sardar M. & Nieto J. (2023). Application of non-singular kernel in a tumor model with strong allee effect. Differential Equations and Dynamical Systems 31(1), 687–692. https://doi.org/10.1007/s12591-022-00622-x

 

[7] Sehra, H. Sadia, S. Haq, H. Alhazmi, I. Khan & Niazai S. (2004). A comparative analysis of three distinct fractional derivatives for a second grade fluid with heat generation and chemical reaction. Scientific Reports 14(1), 4482. https://doi.org/10.1038/s41598-024-55059-9

 

[8] Caputo M. & Fabrizio M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications. 1(2), 73–85.

 

[9] Atangana A. & Baleanu D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science 20(2), 763–769. https://doi.org/10.2298/TSCI160111018A

 

[10] Tateishi A., Ribeiro H. & Lenzi E. (2017). The role of fractional time-derivative operators on anomalous diffusion. Frontiers in Physics 5, 52. https://doi.org/10.3389/fphy.2017.00052

 

[11] Vivas-Cruz L., Gonz´alez-Calder´on A., TanecoHern´andez M. & Luis D. (2020). Theoretical analysis of a model of fluid flow in a reservoir with the Caputo–Fabrizio operator. Communications in Nonlinear Science and Numerical Simulation 84, 105186. https://doi.org/10.1016/j.cnsns.2020.105186

 

[12] Sene N. & Ndiaye A. (2024). Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 208–219. https://doi.org/10.11121/ijocta.1464

 

[13] Hristov J. (2013). A note on the integral approach to non-linear heat conduction with Jeffrey’s fading memory. Thermal Science, 17(3), 733–737. https://doi.org/10.2298/TSCI120826076H

 

[14] Hristov J. (2016). Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s Kernel to the Caputo–Fabrizio time-fractional derivative. Thermal Science, 20(1), 757–762. https://doi.org/10.2298/TSCI160112019H

 

[15] Hristov J. (2017). Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo–Fabrizio space fractional derivative with Jeffrey’s kernel and analytical solutions. Thermal Science, 21(2), 827–839. https://doi.org/10.2298/TSCI160229115H

 

[16] Hristov J. (2018). Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. In: Sachin Bhalekar, ed. Current developments in mathematical sciences. Frontiers in fractional calculus. Bentham Science Publishers, Sharjah, 269–341.

 

[17] Hristov J. (2019). Response functions in linear viscoelastic constitutive equations and related fractional operators. Mathematical Modelling of Natural Phenomena 14(3), 305. https://doi.org/10.1051/mmnp/2018067

 

[18] Hristov J. (2023). Constitutive fractional modeling. Mathematical Modelling: Principle And Theory. 786, 37–140. https://doi.org/10.1090/conm/786/15795

 

[19] Hristov J. (2023). The fading memory formalism with Mittag–Leffler-type kernels as a generator of non-local operators. Applied Sciences 13(5), 3065. https://doi.org/10.3390/app13053065

 

[20] Koka I. & Atangana A. (2017). Solutions of Cattaneo–Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Thermal Science 21(6A), 2299–2305. https://doi.org/10.2298/TSCI160209103K

 

[21] Sene N. (2019). Solutions of fractional diffusion equations and Cattaneo–Hristov diffusion model. International Journal of Analysis and Applications. 17(2), 191–207. https://doi.org/10.28924/2291-8639-17-2019-191

 

[22] Avcı D. & Ero˘glu B. B. ˙I. (2021) Optimal control of the Cattaneo–Hristov heat diffusion model. Acta Mechanica 232(9) 3529–3538. https://doi.org/10.1007/s00707-021-03019-z

 

[23] Ero˘glu B. B. ˙I. & Avcı D. (2021). Separable solutions of Cattaneo–Hristov heat diffusion equation in a line segment: Cauchy and source problems. Alexandria Engineering Journal 60(2), 2347–2353. https://doi.org/10.1016/j.aej.2020.12.018

 

[24] Singh Y., Kumar D., Modi K. & Gill V. (2020). A new approach to solve Cattaneo–Hristov diffusion model and fractional diffusion equations with Hilfer–Prabhakar derivative. AIMS Mathematics5(2), 843–855.

 

[25] Ero˘glu B. B. ˙I. (2023). Two-dimensional Cattaneo–Hristov heat diffusion in the halfplane. Mathematical Modelling and Numerical Simulation with Applications. 3(3), 281–296. https://doi.org/10.53391/mmnsa.1340302

 

[26] Elsgolts L. (1997). Differential equations and thecalculus of variations, Mir, Moscow.

 

[27] Brezis H. (2011). Functional analysis, Sobolev spaces and partial differential equations, Springer, New York. https://doi.org/10.1007/978-0-387-70914-7

 

[28] Kilbas A., Srivastava H. & Trujillo J. (2006). Theory and applications of fractional differential equations, Elsevier Science Inc., USA.

 

[29] Losada J. & Nieto J. (2015). Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation & Applications. 1(2), 87–92.

 

[30] Atanackovi´c T, Pilipovi´c S. & Zorica D. (2018). Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fractional Calculus and Applied Analysis 21(1), 29–44. https://doi.org/10.1515/fca-2018-0003

 

[31] Al-Refai M. & Pal K. (2019). New aspects of Caputo–Fabrizio fractional derivative. Progress in Fractional Differentiation & Applications 5(2), 157–166. https://doi.org/10.18576/pfda/050206

 

[32] Nchama G. (2020). Properties of Caputo–Fabrizio fractional operators. New Trends in Mathematical Sciences 8(1), 1–25. https://doi.org/10.20852/ntmsci.2020.393

 

[33] Losada J. & Nieto J. (2021). Fractional integral associated to fractional derivatives with nonsingular kernels. Progress in Fractional Differentiation & Applications 7(3), 137–143. https://doi.org/10.18576/pfda/070301

 

[34] Zhermolenko V. & Temoltzi-´Avila R. (2021). Bulgakov problem for a hyperbolic equation and robust stability. Moscow University Mechanics Bulletin 76(4), 95–104. https://doi.org/10.3103/S0027133021040051

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing