AccScience Publishing / IJOCTA / Volume 15 / Issue 1 / DOI: 10.36922/ijocta.1586
RESEARCH ARTICLE

Conformable Schrödinger equation in D-dimensional space

Eqab. M.Rabei1,2* Mohamed Ghaleb Al-Masaeed3,4 Sami I. Muslih5,6 Dumitru Baleanu7,8
Show Less
1 Physics Department, Faculty of Science, Al al-Bayt University, P.O. Box 130040, Mafraq 25113, Jordan
2 Science Department, Faculty of Science Jerash Private University, Jerash, Jordan
3 Ministry of Education, Jordan
4 Ministry of Education and Higher Education, Qatar
5 Al-Azhar University-Gaza, Gaza, Palestine
6 Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
7 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
8 Institute of Space Sciences, Magurele–Bucharest, Romania
IJOCTA 2025, 15(1), 69–79; https://doi.org/10.36922/ijocta.1586
Submitted: 8 April 2024 | Accepted: 8 November 2024 | Published: 24 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we investigate a time-dependent conformable Schrödinger equation of order 0 < β ≤ 1, in fractional space domains of space dimension, 0 < Ds ≤ 3. We examine a specific example within the realm of free particle conformable Schrödinger wave mechanics, focusing on both N-Polar and NCartesian coordinates systems. We find that the conformable quantities align with the regular counterparts when β = 1.

Keywords
Conformable derivative
Schrödinger equation
D-dimensional space
Fractional space
Funding
None.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References

[1] Mandelbrot, B.B, (1983). The Fractal Geometry of Nature/Ed. WH Freeman. New York.

 

[2] He, X-F. (1990). Anisotropy and isotropy: A model of fraction-dimensional space. Solid State Communications, 75(2), 111-114. https://doi.org/10.1016/0038-1098(90)90352-C

 

[3] He, X-F. (1990). Fractional dimensionality and fractional derivative spectra of interband optical transitions. Physical Review B, 42(18), 11751. https://doi.org/10.1103/PhysRevB.42.11751

 

[4] Muslih, S. I. & Baleanu, D. (2007). Fractional multipoles in fractional space. Nonlinear Analysis: Real World Applications, 8(1), 198-203. https://doi.org/10.1016/j.nonrwa.2005.07.001

 

[5] Sadallah, M., & Muslih, S. I. (2009). Solution of the equations of motion for Einstein’s field in fractional D dimensional space-time. International Journal of Theoretical Physics, 48, 3312–3318. https://doi.org/10.1007/s10773-009-0133-8

 

[6] Ahmad, S., Zubair, M., & Younis, U. (2022). Capturing of non-hydrogenic Rydberg series of exciton binding energy in two-dimensional monolayer WS2 using a modified Coulomb potential in fractional space. Physica Scripta, 98(1), 015106. https://doi.org/10.1088/1402-4896/acaa6a

 

[7] Khan, S., Khan, F. M. A., Gulalai, & Noor, A. (2023). General solution for electromagnetic wave propagation in cylindrical waveguide filled with fractional space . Waves in Random and Complex Media, 33(1), 49–61. https://doi.org/10.1080/17455030.2021.1874076

 

[8] Sylvere, A. S., David, V., Justin, M., Joseph, M., Betchewe, G., & Inc, M. (2023). Modulational instability in lossless left-handed metamaterials in nonlinear Schr¨odinger equation with non-integer dimensional space. Modern Physics Letters B, 37(11), 2350002. https://doi.org/10.1142/S0217984923500021

 

[9] Awoga, O. A., & Ikot, A. N. (2012). Approximate solution of Schr¨odinger equation in D dimensions for inverted generalized hyperbolic potential. Pramana, 79, 345–356. https://doi.org/10.1007/s12043-012-0328-z

 

[10] Pe˜na, J. J., Garc´ıa-Mart´ınez, J., Garc´ıa-Ravelo, J., & Morales, J. (2015). Bound state solutions of D-dimensional schr¨odinger equation with exponential-type potentials. International Journal of Quantum Chemistry, 115(3), 158-164. https://doi.org/10.1002/qua.24803

 

[11] El-Nabulsi, R. A. (2021). Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry. Physica E: Low-Dimensional Systems and Nanostructures, 134, 114827. https://doi.org/10.1016/j.physe.2021.114827

 

[12] Fisher, M. E. (1974). The renormalization group in the theory of critical behavior. Reviews of Modern Physics, 46(4), 597. https://doi.org/10.1103/RevModPhys.46.597

 

[13] Mandelbrot, B. B. (1989). Fractal geometry: what is it, and what does it do?. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 424(1864), 3–16. https://doi.org/10.1098/rspa.1989.0038

 

[14] Sun, J. (2023). Fractal modification of Schr¨odinger equation and its fractal variational principle. Thermal Science, 27(3 Part A). 2029–2037. https://doi.org/10.2298/TSCI2303029S

 

[15] El-Nabulsi, R. A., & Anukool, W. (2021). Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses. Applied Physics A, 127, 1–15. https://doi.org/10.1007/s00339-021-04989-6

 

[16] Matos-Abiague, A., Oliveira, L. E., & de Dios-Leyva, M. (1998). Fractional-dimensional approach for excitons in G a A s- G a 1- x Al x As quantum wells. Physical Review B, 58(7), 4072.

 

[17] Reyes-G´omez, E., Matos-Abiague, A., Perdomo- Leiva, C. A., de Dios-Leyva, M., & Oliveira, L. E. (2000). Excitons and shallow impurities in G a As- G a 1- x Al x As semiconductor heterostructures within a fractional-dimensional space approach: Magnetic-field effects. Physical Review B,61(19), 13104.

 

[18] Jarlskog, C., & Yndur´ain, F.J. (1986). Is the number of spatial dimensions an integer?. Europhysics Letters, 1(2), 51. https://doi.org/10.1209/0295-5075/1/2/002

 

[19] Schafer, A., & Muller, B. (1986). Bounds for the fractal dimension of space. Journal of Physics A: Mathematical and General, 19(18), 3891. https://doi.org/10.1088/0305-4470/19/18/034

 

[20] Weisskopf, V. F. (1939). On the self-energy and the electromagnetic field of the electron. Physical Review, 56(1), 72. https://doi.org/10.1103/PhysRev.56.72

 

[21] Matos-Abiague, A.(2001). Deformation of quantum mechanics in fractional-dimensional space. Journal of Physics A: Mathematical and General, 34(49), 11059. https://doi.org/10.1088/0305-4470/34/49/321

 

[22] Oldham, K., & Spanier, J. (1974). Elsevier. The fractional calculus theory and applications of differentiation and integration to arbitrary order. London.

 

[23] Prajapati, J. C., Patel, A. D., Pathak, K. N., & Shukla, A. K. (2012). Fractional calculus approach in the study of instability phenomenon in fluid dynamics. Palestine Journal of Mathematics, 1(2), 95–103.

 

[24] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent-II. Geophysical Journal International, 13(5), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

 

[25] Grunwald, A. K. (1867). Uber” begrente” Derivationen und deren Anwedung. Zangew Math und Phys, 12, 441–480.

 

[26] Riesz, M. (1939). L’int´egrale de Riemann-Liouville et le probl´eme de Cauchy pour l’´equation des ondes. Bulletin de la Soci´et´e Math´ematique de France, 67, 153–170. https://doi.org/10.24033/bsmf.1309

 

[27] Weyl, H. (1917). Bemerkungen zum begriff des differentialquotienten gebrochener ordnung. Vierteljschr. Naturforsch. Gesellsch. Zurich, 62(1-2),296–302.

 

[28] Jarad, F., Abdeljawad, T., & Baleanu, D. (2012). On Riesz-Caputo Formulation for Sequential Fractional Variational Principles. Abstract and Applied Analysis, 2012(1),890396. https://doi.org/10.1155/2012/890396

 

[29] Khalil, R., Al Horani, M., Yousef, A.,& Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002

 

[30] Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, 57–66. https://doi.org/10.1016/j.cam.2014.10.016

 

[31] Atangana, A., Baleanu, D., & Alsaedi, A. (2015). New properties of conformable derivative. Open Mathematics, 13(1), 000010151520150081. https://doi.org/10.1515/math-2015-0081

 

[32] Chung, W. S., Zare, S., Hassanabadi, H., & Maghsoodi, E. (2020). The effect of fractional calculus on the formation of quantum-mechanical operators. Mathematical Methods in the Applied Sciences, 43(11), 6950–6967. https://doi.org/10.1002/mma.6445

 

[33] Al-Masaeed, M., Rabei, E. M.,& Al-Jamel, A. (2022). Extension of the variational method to conformable quantum mechanics. Mathematical Methods in the Applied Sciences, 45(5), 2910-2920. https://doi.org/10.1002/mma.7963

 

[34] Al-Masaeed, M. G., Rabei, E. M., & Al-Jamel, A. (2024). Analytical Solution of Conformable Schr¨odinger Wave Equation with Coulomb Potential. Progress in Fractional Differentiation and Applications, 10, 137–147.

 

[35] Al-Masaeed, M., Rabei, E. M., Al-Jamel, A., & Baleanu, D. (2021). Extension of perturbation theory to quantum systems with conformable derivative. Modern Physics Letters A, 36(32), 2150228. https://doi.org/10.1142/S021773232150228X

 

[36] Al-Masaeed, M., Rabei, E. M., & Al-Jamel, A. (2022). Wkb approximation with conformable operator. Modern Physics Letters A, 37(22),2250144. https://doi.org/10.1142/S0217732322501449

 

[37] Hammad, M. M., Yaqut, A. S., Abdel-Khalek, M. A., & Doma, S. B. (2021). Analytical study of conformable fractional Bohr Hamiltonian with Kratzer potential. Nuclear Physics A, 1015, 122307. https://doi.org/10.1016/j.nuclphysa.2021.122307

 

[38] Hammad, M. M. (2021). On the conformable fractional E(5) critical point symmetry. Nuclear Physics A, 1011, 122203. https://doi.org/10.1016/j.nuclphysa.2021.122203

 

[39] Sher, M., Khan, A., Shah, K., & Abdeljawad, T. (2023). Existence and stability theory of pantograph conformable fractional differential problem. Thermal Science, 27(Spec. issue 1), 237–244.https://doi.org/10.2298/TSCI23S1237S

 

[40] Koyunbakan, H., Shah, K., & Abdeljawad, T. (2023). Well-posedness of inverse Sturm–Liouville problem with fractional derivative. Qualitative Theory of Dynamical Systems, 22(1), 23. https://doi.org/10.1007/s12346-022-00727-2

 

[41] Sher, M., Khan, A., Shah, K., Sarwar, M., Alqudah, M. A., & Abdeljawad, T. (2023). Mathematical analysis of fractional order alcoholism model. Alexandria Engineering Journal, 78, 281–291. https://doi.org/10.1016/j.aej.2023.07.010

 

[42] Eiman., Shah, K., Hleili, M., & Abdeljawad, T. (2024). Two strains model of infectious diseases for mathematical analysis and simulations. Mathematical and Computer Modelling of Dynamical Systems, 30(1), 477–495. https://doi.org/10.1080/13873954.2024.2355940

 

[43] Khan, S. (2024). Existence theory and stability analysis to a class of hybrid differential equations using confirmable fractal fractional derivative. Journal of Fractional Calculus and Nonlinear Systems, 5(1), 1-11. https://doi.org/10.48185/jfcns.v5i1.1103

 

[44] Yavuz, M. (2018). Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(1), 1-7. https://doi.org/10.11121/ijocta.01.2018.00540

 

[45] Odaba,sı, M. (2021). Exact analytical solutions of the fractional biological population model, fractional EW and modified EW equations. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 11(1), 52–58. https://doi.org/10.11121/ijocta.01.2021.00841

 

[46] Bateman, H., & Erd´elyi, A.(1953). Higher transcendental functions. Bateman Manuscript Project) Mc Graw-Hill Book Company, volume II.

 

[47] Blumenson, L.E. (1960). A derivation of n-dimensional spherical coordinates. The American Mathematical Monthly, 67(1), 63–66. https://doi.org/10.2307/2308932

 

[48] Palmer, C., & Stavrinou, P. N. (2004). Equations of motion in a non-integer-dimensional space. Journal of Physics A: Mathematical and General, 37(27),6987. https://doi.org/10.1088/0305-4470/37/27/009

 

[49] Stillinger, F. H. (1977). Axiomatic basis for spaces with noninteger dimension. Journal of Mathematical Physics, 18(6), 1224–1234. https://doi.org/10.1063/1.523395

 

[50] Mart´ınez, F., Mart´ınez, I., Kaabar, M., & Paredes, S. (2022). Novel results on conformable Bessel functions. Nonlinear Engineering, 11(1), 6–12. https://doi.org/10.1515/nleng-2022-0002

 

[51] Al-Masaeed, M. G,. Rabei, E. M,. Muslih, S. I,. & Baleanu, D. (2024). Solving conformable Gegenbauer differential equation and exploring its generating function. International Journal of Applied and Computational Mathematics, 10(6), 163. https://doi.org/10.1007/s40819-024-01796-4

 

[52] Rabei, E. M., Al-Jamel, A., & Al-Masaeed, M. G. (2023). Solution of conformable Laguerre and associated Laguerre equations using Laplace transform. Asian-European Journal of Mathematics, 16(10), 2350181. https://doi.org/10.1142/S1793557123501814

 

[53] G¨okdo˘gan, A., ¨ Unal, E., & C, elik. E. (2015). Conformable Fractional Bessel Equation and Bessel Functions. arXiv preprint, arXiv: 1506.07382.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing