Global mathematical analysis of a patchy epidemic model
The dissemination of a disease within a homogeneous population can typically be modeled and managed in a uniform fashion. Conversely, in non-homogeneous populations, it is essential to account for variations among subpopulations to achieve more precise predictive modeling and efficacious intervention strategies. In this study, we introduce and examine the comprehensive behavior of a deterministic two-patch epidemic model alongside its stochastic counterpart to assess disease dynamics between two heterogeneous populations inhabiting distinct regions. First, utilizing a specific Lyapunov function, we demonstrate that the disease-free equilibrium of the deterministic model is globally asymptotically stable. For the stochastic model, we establish that it is well-posed, meaning it possesses a unique positive solution with probability one. Subsequently, we ascertain the conditions necessary to ensure the total extinction of the disease across both regions. Furthermore, we explicitly determine a threshold condition under which the disease persists in both areas. Additionally, we discuss a scenario wherein the disease persists in one region while simultaneously becoming extinct in the other. The article concludes with a series of numerical simulations that corroborate the theoretical findings.
[1] Van Seventer, J.M., & Hochberg, N.S. (2016). Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. International Encyclopedia of Public Health, 22-39. https://do i.org/10.1016/B978-0-12-803678-5.00516-6
[2] Braun, D. (2016). Health Security: Abwarten ist keine Option; Epidemien erfordern die Zusam- menarbeit von Sicherheits-und Gesundheitsex- perten. DEU, 1-4.
[3] Patrick, S. (2011). Weak links: fragile states, global threats, and international security. Oxford University Press.
[4] Wang, C., Horby, P.W., Hayden, F.G., & Gao, G.F. (2020). A novel coronavirus outbreak of global health concern. Lancet (London, England), Vol.395, 470-473. https://doi.org/10.1016/S0 140-6736(20)30185-9
[5] Chriscaden, K.(2020). Impact of COVID-19 on people’s livelihoods, their health and our foodsys- tems. https://www.who.int/news/item/13-1 0-2020-impact-of-covid-19-on-people’s-l ivelihoods-their-health-and-our-food-sys tems.
[6] Kermack, W.O., & Mckendrick, A(`).G. (1991).Contributions to the mathematical theory of epi- demics I. Bulletin of Mathematical Biology, 53, 33-55. https://doi.org/10.1016/S0092-824 0(05)80040-0
[7] Yavuz, M., ur Rahman, M., Yildiz, M., & Joshi, H. (2024). Mathematical Modeling of Middle East Respiratory Syndrome Coronavirus with Bifurca- tion Analysis. Contemporary Mathematics, 5(3), 3997-4012. https://doi.org/10.37256/cm.53 20245004
[8] Ur Rahman, M., Yavuz, M., Arfan, M., & Sami, A. (2024). Theoretical and numerical investiga- tion of a modified ABC fractional operator for the spread of polio under the effect of vaccina- tion. AIMS Biophysics, 11(1), 97-120. https: //doi.org/10.3934/biophy.2024007
[9] ur Rahman, M., Arfan, M., & Baleanu, D.(2023). Piecewise fractional analysis of the mi- gration effect in plant-pathogen-herbivore inter- actions. Bulletin of Biomathematics, 1(1), 1-23. https://doi.org/10.59292/bulletinbiomath .2023001
[10] Li, M.Y., & Muldowney, J.S. (1995). Global sta- bility for the SEIR model in epidemiology. Math- ematical Biosciences, 125(2), 155-64. https://do i.org/10.1016/0025-5564(95)92756-5
[11] Smith, H.L., Wang, L., & Li, M.Y. (2001). Global Dynamics of an SEIR Epidemic Model with Ver- tical Transmission. SIAM Journal on Applied Mathematics, 62, 58-69. https://doi.org/10 .1137/S0036139999359860
[12] Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., & Liu, W. (1989). Epidemiologi- cal models with age structure, proportionate mix- ing, and cross-immunity. Journal of Mathematical Biology, 27, 233-258. https://doi.org/10.100 7/BF00275810
[13] Shulgin, B., Stone, L., & Agur, Z. (1998). Pulse vaccination strategy in the SIR epidemic model. Bulletin of Mathematical Biology, 60, 1123-1148. https://doi.org/10.1016/S0092-8240(98)9 0005-2
[14] d’Onofrio, A. (2005). On pulse vaccination strat- egyin the SIR epidemic model with vertical trans-
mission. Applied Mathematics Letters, 18, 729-732. https://doi.org/10.1016/j.aml.2004.05.012
[15] Shi, Z., Zhang, X., & Jiang, D. (2019). Dynamics of an avian influenza model with half-saturated incidence. Applied Mathematics and Computa- tion, 355, 399-416. https://doi.org/10.101 6/j.amc.2019.02.070
[16] Calvo, J.G., Hern’andez, A., Porter, M.A., & Sanchez, F. (2019). A two-patch epidemic model with nonlinear reinfection. Revista de Matem´atica: Teor´ıa y Aplicaciones, 27(1), 23-48. https://doi.org/10.15517/rmta.v27i1.3994 6
[17] Moore, C. (1990). Unpredictability and undecid- ability in dynamical systems. Physical Review Letters, 64(20), 2354-2357. https://doi.org/ 10.1103/PhysRevLett.64.2354
[18] Cao, Z., Feng, W., Wen, X., & Zu, L. (2019).Dynamical behavior of a stochastic SEI epi-demic model with saturation incidence and logis-tic growth. Physica A: Statistical Mechanics and its Applications, 523, 894-907. https://doi.org/10.1016/j.physa.2019.04.228
[19] Pang, Y., Han, Y., & Li, W. (2014). The threshold of a stochastic SIQS epidemic model. Advances in Difference Equations, 2014, 1-15. https://doi. org/10.1186/1687-1847-2014-320
[20] Khan, T., Zaman, G., & El-Khatib, Y. (2021). Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model. Re- sults in Physics, 24, 104004. https://doi.org/ 10.1016/j.rinp.2021.104004
[21] Joshi, H., & Yavuz, M. (2024). Numerical analy- sis of compound biochemical calcium oscillations process in hepatocyte cells. Advanced Biology, 8(4), 2300647. https://doi.org/10.1002/ad bi.202300647
[22] Joshi, H., Yavuz, M., & O(¨)zdemir, N. (2024). Anal-ysis of novel fractional order plastic waste model and its effects on air pollution with treatment mechanism. Journal of Applied Analysis & Com- putation, 14(6), 3078-3098. https://doi.org/10 .11948/20230453
[23] Adel, W., Elsonbaty, A., & Mahdy, A. (2024). On some recent advances in fractional order model- ing in engineering and science. Computation and Modeling for Fractional Order Systems, 169-197. https://doi.org/10.1016/B978-0-44-31540 4-1.00016-3
[24] Salih, R. I., Jawad, S., Dehingia, K., & Das, A. (2024). The effect of a psychological scare on the dynamics of the tumor-immune interac- tion with optimal control strategy. An Interna- tional Journal of Optimization and Control: The- ories & Applications (IJOCTA), 14(3), 276-293. https://doi.org/10.11121/ijocta.1520
[25] Evirgen, F., O(¨)zk¨ose, F., Yavuz, M., & O(¨)zdemir,N. (2023). Real data-based optimal control strate- gies for assessing the impact of the Omicron vari- anton heart attacks. AIMS Bioengineering, 10(3), 218-239. https://doi.org/10.3934/bioeng.2 023015
[26] El-Mesady, A., Ahmed, N., Elsonbaty, A., & Adel, W. (2023). Transmission dynamics and con- trol measures of reaction-diffusion pine wilt dis- ease model. The European Physical Journal Plus, 138(12), 1078. https://doi.org/10.1140/epjp /s13360-023-04705-8
[27] Yavuz, M., Boulaasair, L., Bouzahir, H., Diop,M.A., & Benaid, B. (2024). The impact of two independent gaussian white noises on the behav- ior of a stochastic epidemic model. Journal of Ap- plied Mathematics and Computational Mechanics, 23(1), 121-134. https://doi.org/10.17512/jam cm.2024.1.10
[28] Izadi, M., El-Mesady, A., & Adel, W. (2024). A novel Touchard polynomial-based spectral matrix collocation method for solving the Lotka-Volterra competition system with diffusion. Mathematical Modelling and Numerical Simulation with Appli- cations, 4(1), 37-65. https://doi.org/10.533 91/mmnsa.1408997
[29] Ayaz, F., & Hereda˘g, K. (2024). Fractional model for blood flow under MHD influence in porous and non-porous media. An International Jour- nal of Optimization and Control: Theories & Applications (IJOCTA), 14(2), 156-167. https: //doi.org/10.11121/ijocta.1497
[30] Raeisi, E., Yavuz, M., Khosravifarsani, M., & Fadaei, Y. (2024). Mathematical modeling of in- teractions between colon cancer and immune sys- tem with a deep learning algorithm. The Euro- pean Physical Journal Plus, 139(4), 345. https: //doi.org/10.1140/epjp/s13360-024-05111 -4
[31] Boulaasair, L., Bouzahir, H., Vargas, A.N., & Diop, M.A. (2022). Existence and uniqueness of solutions for stochastic urban-population growth model. Frontiers in Applied Mathematics and Sta- tistics, 8, 960399. https://doi.org/10.3389/fa ms.2022.960399
[32] Naik, P. A., Yavuz, M., Qureshi, S., Owolabi, K. M., Soomro, A., & Ganie, A. H. (2024). Memory impacts in hepatitis C: A global anal- ysis of a fractional-order model with an effective treatment. Computer Methods and Programs in Biomedicine, 254, 108306. https://doi.org/10 .1016/j.cmpb.2024.108306
[33] Evirgen, F., U¸car, E., U¸car, S., & O(¨)zdemir,N. (2023). Modelling influenza a disease dynam- ics under Caputo-Fabrizio fractional derivative with distinct contact rates. Mathematical Mod- elling and Numerical Simulation with Applica- tions, 3(1), 58-73. https://doi.org/10.53391 /mmnsa.1274004
[34] Sabbar, Y. (2023). Asymptotic extinction and persistence of a perturbed epidemic model with different intervention measures and standard l´evy jumps. Bulletin of Biomathematics, 1(1), 58-77. https://doi.org/10.59292/bulletinbiomath .2023004
[35] Kiouach, D., & Boulaasair, L. (2018). Station- ary distribution and dynamic behaviour of a sto- chastic SIVR epidemic model with imperfect vac- cine. Journal of Applied Mathematics, 2018(1),1291402. https://doi.org/10.1155/2018/1291402
[36] Elsonbaty, A., Alharbi, M., El-Mesady, A., & Adel, W. (2024). Dynamical analysis of a novel discrete fractional lumpy skin disease model. Par- tial Differential Equations in Applied Mathemat- ics, 9, 100604. https://doi.org/10.1016/j.pa diff.2023.100604
[37] Boulaasair, L. (2023). Threshold properties of a stochastic epidemic model with a variable vac- cination rate. Bulletin of Biomathematics, 1(2), 177-191. https://doi.org/10.59292/bulleti nbiomath.2023009
[38] Adel, W., Amer, Y.A., Youssef, E.S., & Mahdy, A.M. (2023). Mathematical analysis and simula- tions for a Caputo-Fabrizio fractional COVID-19 model. Partial Differential Equations in Applied Mathematics, 8, 100558. https://doi.org/10.1 016/j.padiff.2023.100558
[39] Fatima, B., Yavuz, M., Rahman, M.U., & Al- Duais, F.S. (2023). Modeling the epidemic trend of middle eastern respiratory syndrome coron- avirus with optimal control. Mathematical Bio- sciences and Engineering, 20(7), 11847-11874. https://doi.org/10.3934/mbe.2023527