A Fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs
Today, the socio-cultural lack of some countries with increased urbanization has led to the unconscious breeding of stray dogs. The failure to care for the offspring of possessive dogs or ignoring the responsibility to find a suitable family for the offspring increased the dog population on the streets and in the shelters. In this study, our main target is to analyze the habitat of stray dogs and the strategy of how to control the population without damaging the ecosystem of the species. For this aim, we establish a fractional-order differential equation system to investigate the fractal dimension with long-term memory that invovles two compartments; the non-sterilized dog population (x(t)) and the sterilized one (y(t)). Firstly, we analyze the stability of the equilibrium points using the Routh-Hurwitz criteria to discuss cases that should not affect the ecosystem of the dog population, but control the stray dog population in the habitat. Since the intervention to the stray dog population occurs at discrete time impulses, we use the Euler method's discretization process to analyse the local and global stability around the equilibrium points. Besides this, we show that the solutions of the system represent semi-cycle behaviors. At the end of the study, we use accurate data to demonstrate the sterilization rate of stray dogs in their habitat.
[1] Amaku, M., Dias, R.A. & Ferreira, F. (2010). Dynamics and control of stray dog populations. Mathematical Population Studies, 17 (2), 69-78.
[2] Fournier, A. & Geller, E. (2004). Behavior anal- ysis of companion-animal overpopulation: a con- ceptualization of the problem and suggestions for intervention. Behavior and Social Issues, 68, 51- 68.
[3] Thirthar, A. A., Majeed, S. J., Shah, K., & Ab- deljawad, T. (2022). The dynamics of an aquatic ecological model with aggregation, fear and har- vesting effect. AIMS Mathematics, 7(10), 18532- 18552.
[4] Thirthar, A. A., Panja, P., Khan, A., Alqudah, M. A., & Abdeljawad, T. (2023). An ecosys- tem model with memory effect considering global warming phenomena and an exponential fear function. Fractals, 31(10), 1-19.
[5] Thirthar, A. A. (2023). A mathematical mod- elling of a plant-herbivore community with ad- ditional effects of food on the environment. Iraqi Journal of Science, 64(7),3551-3566.
[6] Yousef, A. & Bozkurt Yousef, F. (2019). Bi- furcation and stability analysis of a system of fractional-order differential equations for a plant- herbivore model with Allee effect. Mathematics, 7(454), 1-18.
[7] Morters, M. K., McKinley, T. J., Restif, O., Conlan, A. J. K., Cleaveland, S., Hampson, K., Whay, H. R., Damriyasa, I. M. & Wood, J.L.N.(2014).The demography free-roaming dog popu- lations and applications to disease and popula- tion control. Journal of Applied Ecology, 51, 1096- 1106.
[8] Sene, N. (2022). Theory and applications of new fractional-order chaotic system under Ca- puto operator. An International Journal of Opti- mization and Control: Theories and Applications (IJOCTA), 12(1), 20-38.
[9] Kashyap, A.J., Bhattacharjee, D. & Sarmah, H.K. (2021). A fractional model in exploring the role of fear in mass mortality of pelicans in the Salton Sea. An International Journal of Opti- mization and Control: Theories and Applications (IJOCTA), 11(3), 28-51.
[10] Podlubny, I. (1999). Fractional Differential Equa- tions. Academy Press, San Diego CA.
[11] Nunes, C. M., de Lima, V. M. F., de Paula, H. B., Perri, S. H. V., de Andrade, A. M., Dias, F. E. F., & Burattini, M. N. (2008). Dog culling and replacement in an area endemic for visceral leish- maniasis in Brazil. Veterinary Parasitology, 153, 19-23.
[12] Linda, J.S.A. (2007). An Introduction to Math- ematical Biology. Pearson Education Ltd., USA, 123-127.
[13] Bilgil, H., Yousef, A., Erciyes, A., Erdin¸c, U(¨) . & O(¨)zt¨urk, Z. (2022). A fractional-order mathemati-cal model based on vaccinated and infected com- partments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Journal of Computational and Applied Mathemat- ics, 115015.
[14] Hethcote, H., Zhien, M., & Shengbing, L. (2002). Effects of quarantine in six endemic models for in- fectious diseases. Mathematical Biosciences, 180, 141160.
[15] O(¨)zt¨urk, Z., Bilgil, H., & Sorgun, E. (2023). Appli-cation of fractional SIQRV model for SARS-CoV-2 and stability analysis. Symmetry, 15(5), 1-13.
[16] Slater, M. R. (2001). The role of veterinary epi- demiology in the study of free-roaming dogs and cats. Preventive Veterinary Medicine, 48, 273- 286.
[17] Allen L. J. S. (2007). An Introduction to Mathe- matical Biology. Department of Mathematics and Statistics, Texas Tech University, Pearson Educa- tion., 348.
[18] Santos Baquero, O., Amaku, M., & Ferreira, F.(2015). capm: An R package for Companion An- imal Population Management.
[19] O(¨)zt¨urk, Z. , Bilgil, H., & Erdin¸c, U(¨) . (2022). An optimized continuous fractional grey model for forecasting of the time dependent real world cases. Hacettepe Journal of Mathematics and Statistics, 51 (1), 308-326.
[20] Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epi- demics, in: Proceedings of the Royal Society of London, Series A, Containing Papers of a Math- ematical and Physical Character, 115 (772), 700- 721.
[21] Yousef, A., Bozkurt, F., & Abdeljawad, A. (2020). Qualitative analysis of a fractional pandemic spread model of the novel coronavirus (COVID- 19). Comput Materials Continua, 66, 843-869.
[22] Bozkurt Yousef, F., Yousef, A., Abdeljawad, T., & Kalinli, A. (2020). Mathematical modeling of breast cancer in a mixed immune-chemotherapy treatment considering the effect of ketogenic diet. The European Physical Journal Plus, 135(12), 1- 23.
[23] Li, L., & Liu, J. G. (2016). A generalized defini- tion of Caputo derivatives and its application to fractional ODEs. SIAM Journal on Mathematical Analysis, 50(3), 2867-2900.
[24] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, v.204, Elsevier.
[25] Yaro, D., Omari-Sasu, S. K., Harvim, P., Saviour,A. W. & Obeng, B. A. (2015). Generalized Euler method for modeling measles with fractional dif- ferential equations. The International journal of Innovative Research and Development, 4(4), 380- 384.
[26] Nazir, G., Zeb, A., Shah, K., Saeed, T., Khan, R. A. & Khan, S. I. U. (2021). Study of COVID-19 mathematical model of fractional order via modi- fied Euler method. Alexandria Engineering Jour- nal, 60(6), 5287-5296.
[27] Gibbons, C., Kulenovic, M. R. S., Ladas, G. (2000). On the recursive sequence xn+1=(α+βxn−1)/(γ+xn ). Mathematical Sci- ences Research Hot-line, 4(2), 1-11.
[28] Cunningham, K., Kulenovi´c, M.R.S., Ladas, G. & Valicenti, S.V. (2001). On the recursive se- quence xn+1=(α+βxn−1)/(Bxn +Cxn−1). Non- linear Analysis: Theory, Methods and Applica- tions, 47, 4603-4614.
[29] https://www.bbc.com, [Date Accessed 19 June 2023]
[30] Garcia, R.D.C.M., Calder´on, N., & Ferreira, F.(2012). Consolidation of international guidelines for the management of canine populations in ur- ban areas and proposal of indicators for their management. Revista Panamericana de Salud Publica, 32 , 140-144.
[31] Baquero, O. S., Akamine, L. A., Amaku, M., Fer- reira, F. (2016). Dening priorities for dog popu- lation management through mathematical mod- eling. Preventive Veterinary Medicine, 123, 121- 127.