AccScience Publishing / IJOCTA / Volume 14 / Issue 2 / DOI: 10.11121/ijocta.1402
RESEARCH ARTICLE

Dislocation hyperbolic augmented Lagrangian algorithm in convex programming

Lennin Mallma Ramirez1* Nelson Maculan2 Adilson Elias Xavier1 Vinicius Layter Xavier3
Show Less
1 Federal University of Rio de Janeiro, Systems Engineering and Computer Science Program (COPPE), Rio de Janeiro, Brazil
2 Federal University of Rio de Janeiro, Systems Engineering and Computer Science Program-Applied Mathematics (IM/COPPE), Rio de Janeiro, Brazil
3 Rio de Janeiro State University, Institute of Mathematics and Statistics, Graduate Program in Computational Sciences, Rio de Janeiro, Brazil
IJOCTA 2024, 14(2), 147–155; https://doi.org/10.11121/ijocta.1402
Submitted: 7 May 2023 | Accepted: 5 April 2024 | Published: 7 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The dislocation hyperbolic augmented Lagrangian algorithm (DHALA) is a new approach to the hyperbolic augmented Lagrangian algorithm (HALA). DHALA is designed to solve convex nonlinear programming problems. We guarantee that the sequence generated by DHALA converges towards a Karush-Kuhn-Tucker point. We are going to observe that DHALA has a slight computational advantage in solving the problems over HALA. Finally, we will computationally illustrate our theoretical results.

Keywords
Augmented Lagrangian
constrained optimization
convergence
convex problem
Conflict of interest
The authors declare they have no competing interests.
References

[1] Tseng, P., & Bertsekas, D.P. (1993). On the con- vergence of the exponential multiplier method for convex programming. Mathematical Program- ming, 60, 1-19. https://doi.org/10.1007/BF01 580598

[2] Polyak, R.A. (2001). Log-sigmoid multipliers method in constrained optimization. Annals of Operations Research, 101, 427-460. https://do i.org/10.1023/A:1010938423538

[3] Polyak, R., & Teboulle, M. (1997). Nonlinear rescaling and proximal-like methods in convex op- timization. Mathematical Programming, 76, 265-284. https://doi.org/10.1007/BF02614440

[4] Kort, B.W., & Bertsekas, D.P. (1976). Combined primal-dual and penalty methods for convex pro- gramming. SIAM Journal on Control and Opti- mization, 14, 268-294. https://doi.org/10.1137/0314020

[5] Rockafellar, R.T. (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Opera- tions Research, 1, 97-116. https://doi.org/10 .1287/moor.1.2.97

[6] Mallma-Ramirez, L. (2022). The Hyperbolic Aug- mented Lagrangian Algorithm. Ph.D. Thesis. Fed- eral University of Rio de Janeiro/COPPE, Rio de Janeiro, Brazil. https://www.cos.ufrj.br/up loadfile/publicacao/3038.pdf

[7] Xavier, A.E. (1982a). Penaliza¸c˜ao Hiperb´olica- Um Novo M´etodo para Resolu¸c˜ao de Problemas de Otimiza¸c˜ao . MSc Thesis. Federal University of Rio de Janeiro/COPPE, Rio de Janeiro, Brazil.

[8] Xavier, A.E. (1992). Penaliza¸c˜ao Hiperb´olica. Ph.D. Thesis. Federal University of Rio de Janeiro/COPPE, Rio de Janeiro, Brazil.

[9] Kanzow, C., & Steck, D. (2017). An example com-paring the standard and safeguarded augmented Lagrangian methods. Operations Research Let- ters, 45, 598-603. https://doi.org/10.1016/ j.orl.2017.09.005

[10] Xavier, A. E. (2001). Hyperbolic penalty: a new method for nonlinear programming with inequal- ities. International Transactions in Operational Research, 8, 659-671. https://doi.org/10.1 111/1475-3995.t01-1-00330

[11] Zangwill, W.I. (1967). Non-linear programming via penalty function. Management Science, 13, 344-358. https://doi.org/10.1287/mnsc.1 3.5.344

[12] Auslender, A., Teboulle, M., & Ben-Tiba, S.(1999). Interior proximal and multiplier meth- ods based on second order homogeneous kernels. Mathematics of Operations Research, 24, 645-668. https://doi.org/10.1287/moor.24.3.645

[13] Polyak, R.A. (2002). Nonlinear rescaling vs. smoothing technique in convex optimization. Mathematical Programming, 92, 197-235. https: //doi.org/10.1007/s101070100293

[14] Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton, NJ.

[15] Hartman, J.K. (1975). Iterative determination of parameters for an exact penalty function. Jour- nal of Optimization Theory and Applications, 16, 49-66. https://doi.org/10.1007/BF00935623

[16] Harwell Subroutine Library (2002). A collection of Fortran codes for large scale scientific compu- tation, https://www.hsl.rl.ac.uk/

[17] Hock, W., & Schittkowski, K. (1981). Test Exam- ples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems 187, Springer-Verlag, Berlin, Germany. https: //doi.org/10.1007/978-3-642-48320-2

[18] Tirkolaee, E.B., Goli, A., G¨(u)tmen, S., Weber,G.W., & Szwedzka, K. (2023). A novel model for sustainable waste collection arc routing prob- lem: Pareto-based algorithms. Annals of Opera- tions Research, 324, 189-214. https://doi.org/ 10.1007/s10479-021-04486-2

[19] Grapiglia, G.N. (2021). Worst-case evaluation complexity of a quadratic penalty method for nonconvex optimization. Optimization Methods and Software, 38, 781-803. https://doi.org/ 10.1080/10556788.2023.2189711

[20] Belloufi, M., Benzine, R., & Laskri, Y. (2013). Modification of the Armijo line search to satisfy the convergence properties of HS method. An In- ternational Journal of Optimization and Control: Theories & Applications (IJOCTA), 3, 145-152. https://doi.org/10.11121/ijocta.01.2013. 00141

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing