AccScience Publishing / IJOCTA / Volume 12 / Issue 1 / DOI: 10.11121/ijocta.2022.1108
RESEARCH ARTICLE

Theory and applications of new fractional-order chaotic system under Caputo operator

Ndolane Sene1*
Show Less
1 D´epartement de Math´ematiques de la D´ecision, Facult´e des Sciences Economiques et Gestion, Universit´e Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
IJOCTA 2022, 12(1), 20–38; https://doi.org/10.11121/ijocta.2022.1108
Submitted: 6 May 2021 | Accepted: 16 August 2021 | Published: 27 October 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper introduces the properties of a fractional-order chaotic system described by the Caputo derivative. The impact of the fractional-order derivative has been focused on. The phase portraits in different orders are obtained with the aids of the proposed numerical discretization, including the discretization of the Riemann-Liouville fractional integral. The stability analysis has been used to help us to delimit the chaotic region. In other words, the region where the order of the Caputo derivative involves and where the presented system in this paper is chaotic. The nature of the chaos has been established using the Lyapunov exponents in the fractional context. The schematic circuit of the proposed fractional-order chaotic system has been presented and simulated in via Mutltisim. The results obtained via Multisim simulation of the chaotic circuit are in good agreement with the results with Matlab simulations. That provided the fractional operators can be applied in real- worlds applications as modeling electrical circuits. The presence of coexisting attractors for particular values of the parameters of the presented fractional-order chaotic model has been studied.

Keywords
Phase portraits
Fractional-order chaotic system
Attractors
Lyapunov exponents
Chaotic behavior
Conflict of interest
The authors declare they have no competing interests.
References

[1] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Vol. 204. Elsevier.

[2] Yavuz, M. (2019). Characterizations of twodifferent fractional operators without singu-lar kernel.Mathematical Modelling of NaturalPhenomena, 14(3), 302.

[3] Khan, A., Li, Y., Shah, K., & Khan, T. S.(2017). On coupled-laplacian fractional dif-ferential equations with nonlinear boundaryconditions.Complexity, p.9.

[4] Zafar, Z. U. A., Sene, N., Rezazadeh, H.,& Esfandian, N. (2021). Tangent nonlinearequation in context of fractal fractional oper-ators with nonsingular kernel.MathematicalSciences, 1-11.

[5] Sene, N. (2020). Second-grade fluid modelwith Caputo–Liouville generalized fractionalderivative.Chaos, Solitons & Fractals, 133,109631.

[6] Mansal, F., & Sene, N. (2020). Analysis offractional fishery model with reserve area inthe context of time-fractional order deriva-tive.Chaos, Solitons & Fractals, 140, 110200.

[7] Jarad, F., Abdeljawad, T., & Baleanu, D.(2017). On the generalized fractional deriva-tives and their Caputo modification.J. Non-linear Sci. Appl., 10, 2607-2619.

[8] Podlubny, I. (1999).Fractional DifferentialEquations, Mathematics in Science and En-gineering, Academic Press, New York, NY,USA, 198.

[9] P ́erez, J. E. S., G ́omez-Aguilar, J. F.,Baleanu, D., & Tchier, F. (2018). Chaotic at-tractors with fractional conformable deriva-tives in the Liouville–Caputo sense and itsdynamical behaviors.Entropy, 20(5), 384.

[10] G ́omez-Aguilar, J. F., Abro, K. A., Kolebaje,O., & Yildirim, A. (2019). Chaos in a cal-cium oscillation model via Atangana-Baleanuoperator with strong memory.The EuropeanPhysical Journal Plus, 134(4), 1-9.

[11] Sene, N. (2021). Introduction to thefractional-order chaotic system under frac-tional operator in Caputo sense.AlexandriaEngineering Journal, 60(4), 3997-4014.

[12] Akgul, A. (2019). Chaotic oscillator basedon fractional order memcapacitor.Journalof Circuits, Systems and Computers, 28(14),1950239.

[13] Munoz-Pacheco, J. M., Zambrano-Serrano,E., Volos, C., Jafari, S., Kengne, J., &Rajagopal, K. (2018). A new fractional-order chaotic system with different familiesof hidden and self-excited attractors.Entropy,20(8), 564.

[14] Sene, N. (2020). Analysis of a four-dimensional hyperchaotic system describedby the Caputo–Liouville fractional derivative.Complexity, 2020.

[15] Khan, A., G ́omez-Aguilar, J. F., Abdel-jawad, T., & Khan, H. (2020). Stabilityand numerical simulation of a fractional or-der plant-nectar-pollinator model.AlexandriaEngineering Journal, 59(1), 49-59.

[16] Sene, N. (2021). Analysis of a fractional-order chaotic system in the context of the Ca-puto fractional derivative via bifurcation andLyapunov exponents.Journal of King SaudUniversity-Science, 33(1), 101275.

[17] Sene, N., & Ndiaye, A. (2020). On class offractional-order chaotic or hyperchaotic sys-tems in the context of the caputo fractional-order derivative.Journal of Mathematics,2020.

[18] Sene, N. (2021). Mathematical views of thefractional Chua’s electrical circuit describedby the Caputo-Liouville derivative.RevistaMexicana de F ́ısica, 67(1), 91-99.

[19] Akgul, A., Arslan, C., & Aricioglu, B. (2019).Design of an interface for random numbergenerators based on integer and fractional or-der chaotic systems.Chaos Theory and Ap-plications, 1(1), 1-18.

[20] Akgul, A., Li, C., & Pehlivan, I. (2017). Am-plitude control analysis of a four-wing chaoticattractor, its electronic circuit designs andmicrocontroller-based random number gener-ator.Journal of Circuits, Systems and Com-puters, 26(12), 1750190.

[21] Atangana, A., & G ́omez-Aguilar, J. F.(2017). Hyperchaotic behaviour obtained viaa nonlocal operator with exponential decayand Mittag-Leffler laws.Chaos, Solitons &Fractals, 102, 285-294.

[22] Rajagopal, K., Durdu, A., Jafari, S.,Uyaroglu, Y., Karthikeyan, A., & Akgul, A.(2019). Multiscroll chaotic system with sig-moid nonlinearity and its fractional orderform with synchronization application.Inter-national Journal of Non-Linear Mechanics,116, 262-272.

[23] Rajagopal, K., Guessas, L., Karthikeyan, A.,Srinivasan, A., & Adam, G. (2017). Fractionalorder memristor no equilibrium chaotic sys-tem with its adaptive sliding mode synchro-nization and genetically optimized fractionalorder PID synchronization.Complexity, 2017.

[24] ́Avalos-Ruiz, L. F., Z ́u ̃niga-Aguilar, C. J.,G ́omez-Aguilar, J. F., Escobar-Jim ́enez, R.F., & Romero-Ugalde, H. M. (2018). FPGAimplementation and control of chaotic sys-tems involving the variable-order fractionaloperator with Mittag–Leffler law.Chaos,Solitons & Fractals, 115, 177-189.

[25] Danca, M. F. (2018). Lyapunov exponents ofa discontinuous 4D hyperchaotic system of in-teger or fractional order.Entropy, 20(5), 337.

 

[26] L ̈u, J., Chen, G., & Cheng, D. (2004). A newchaotic system and beyond: the generalizedLorenz-like system.International Journal ofBifurcation and Chaos, 14(05), 1507-1537.

[27] Garrappa, R. (2018). Numerical solution offractional differential equations: A survey anda software tutorial.Mathematics, 6(2), 16.

[28] Danca, M. F., & Kuznetsov, N. (2018).Matlab code for Lyapunov exponents offractional-order systems.International Jour-nal of Bifurcation and Chaos, 28(05),1850067.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing