AccScience Publishing / IJOCTA / Volume 10 / Issue 2 / DOI: 10.11121/ijocta.01.2020.00947
RESEARCH ARTICLE

The problem with fuzzy eigenvalue parameter in one of the boundary conditions

H¨ulya G¨ultekin C¸ itil1*
Show Less
1 Department of Mathematics, Faculty of Arts and Sciences, Giresun University, Turkey
IJOCTA 2020, 10(2), 159–165; https://doi.org/10.11121/ijocta.01.2020.00947
Submitted: 15 March 2020 | Accepted: 26 April 2020 | Published: 31 May 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this work, we study the problem with fuzzy eigenvalue parameter in one of the boundary conditions. We find fuzzy eigenvalues of the problem using the Wronskian functions \underline{W}_{\alpha }\left( \lambda \right) and \overline{W}
_{\alpha }\left( \lambda \right). Also, we find eigenfunctions associated with eigenvalues. We draw graphics of eigenfunctions.

Keywords
Sturm-Liouville fuzzy problem
Fuzzy eigenvalue
Fuzzy eigenfunction
Conflict of interest
The authors declare they have no competing interests.
References

[1] Irkin, R., Y1lmaz O(¨)zg¨ur, N., Ta>s, N. (2018).Optimization of lactic acid bacteria viability using fuzzy soft set modelling. An Interna- tional Journal of Optimization and Control: Theories & Applications, 8(2), 266-275.

[2] Karaka>s, E., O(¨)zpalamut>cu, H. (2019). A ge-netic algorithm for fuzzy order acceptance and scheduling problem. An International Journal of Optimization and Control: The- ories & Applications, 9(2), 186-196.

[3] Fulton, C. T. (1977). Two point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Soc. Edinburg, 77A, 293-308.

[4] Binding, P. A., Browne, P. J., Watson, B. A. (2002). Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II. Journal of Computa- tional and Applied Mathematics, 148(1), 147- 168.

[5] G¨ultekin C>itil, H., Alt1n1>s1k, N. (2017). On the eigenvalues and the eigenfunctions of the Sturm-Liouville fuzzy boundary value prob- lem. Journal of Mathematical and Computa- tional Science, 7(4), 786-805.

[6] G¨ultekin C>itil, H., Alt1n1>s1k, N. (2018). The examination of eigenvalues and eigenfunc- tions of the Sturm-Liouville fuzzy problem ac- cording to boundary conditions. International Journal of Mathematical Combinatorics, 1, 51-60.

[7] G¨ultekin C>itil, H., Alt1n1>s1k, N. (2018). The eigenvalues and the eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy co- e伍cient boundary conditions. Journal of Sci- ence and Arts, 4(45), 947-958.

[8] G¨ultekin C>itil, H. (2017). The eigenval- ues and the eigenfunctions of the Sturm- Liouville fuzzy boundary value problem ac- cording to the generalized diferentiability. Scholars Journal of Physics, Mathematics and Statistics, 4(4), 185-195.

[9] Ceylan, T., Alt1n1>s1k, N. (2018). Eigenvalue problem with fuzzy coe伍cients of bound- ary conditions. Scholars Journal of Physics, Mathematics and Statistics, 5(2), 187-193.

[10] G¨ultekin C>itil, H. (2019). Important notes for a fuzzy boundary value problem. Applied Mathematics and Nonlinear Sciences, 4(2), 305–314.

[11] Ceylan, T., Alt1n1>s1k, N. (2018). Fuzzy eigen- value problem with eigenvalue parameter con- tained in the boundary condition. Journal of Science and Arts, 3(44), 589-602.

[12] G¨ultekin C>itil, H. (2019). Sturm-Liouville fuzzy problem with fuzzy eigenvalue param- eter. International Journal of Mathematical Modelling & Computations, 9(3), 187- 195.

[13] Liu, H.-K. (2011). Comparison results of two- point fuzzy boundary value problems. Inter- national Journal of Computational and Math- ematical Sciences, 5(1), 1-7.

[14] Khastan, A., Nieto, J. J. (2010). A boundary value problem for second order fuzzy diferen- tial equations. Nonlinear Analysis, 72, 3583- 3593.

[15] Shirin, S., Saha, G. K. (2011). A new compu- tational methodology to find appropriate so- lutions of fuzzy equations. Mathematical The- ory and Modeling, 2(1), 1-10.

[16] Lakshmikantham, V., Mohapatra, R. N.(2003). Theory of Fuzzy Di erential Equa- tions and Inclusions. Taylor and Francis, Lon- don, New York.

[17] Puri, M. L., Ralescu D. A. (1983). Difer- entials of fuzzy functions. Journal of Mathe- matical Analysis and Applications, 91(2), 552- 558.

[18] Bede, B. (2008). Note on “Numerical solutions of fuzzy diferential equations by predictor-corrector method” . Information Sciences, 178(7), 1917-1922.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing