Fractional trapezium type inequalities for twice differentiable preinvex functions and their applications
Trapezoidal inequalities for functions of divers natures are useful in numerical computations. The authors have proved an identity for a generalized integral operator via twice differentiable preinvex function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent past decades. Various special cases have been identified. Some applications of presented results to special means have been analyzed. The ideas and techniques of this paper may stimulate further research.
[1] Aslani, S.M. Delavar, M.R. and Vaezpour, S.M. (2018). Inequalities of Fej/er type related to generalized convex functions with applica- tions. Int. J. Anal. Appl., 16(1), 38–49.
[2] Chen, F.X. and Wu, S.H. (2016). Several complementary inequalities to inequalities of Hermite–Hadamard type for s–convex func- tions. J. Nonlinear Sci. Appl., 9(2), 705–716.
[3] Chu, Y.M. Khan, M.A. Khan, T.U. and Ali, T. (2016). Generalizations of Hermite– Hadamard type inequalities for MT–convex functions. J. Nonlinear Sci. Appl., 9(5), 4305– 4316.
[4] Dahmani, Z. (2010). On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal., 1(1), 51–58.
[5] Delavar, M.R. and Dragomir, S.S. (2017). On η–convexity. Math. Inequal. Appl., 20, 203– 216.
[6] Delavar, M.R. and De La Sen, M. (2016). Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus, 5(1661).
[7] Dragomir, S.S. and Agarwal, R.P. (1998). Two inequalities for diferentiable mappings and applications to special means of real num- bers and trapezoidal formula. Appl. Math. Lett., 11(5), 91–95.
[8] Khan, M.A. Chu, Y.M. Kashuri, A. Liko, R. and Ali, G. (2018). New Hermite–Hadamard inequalities for conformable fractional inte- grals. J. Funct. Spaces, Article ID 6928130, 9.
[9] Khan, M.A. Khurshid, Y. and Ali, T. (2017). Hermite–Hadamard inequality for fractional integrals via η–convex functions. Acta Math. Univ. Comenianae, 79(1), 153–164.
[10] Liu, W.J. (2014). Some Simpson type in- equalities for h–convex and (Q, m)–convex functions. J. Comput. Anal. Appl., 16(5), 1005–1012.
[11] Liu, W. Wen, W. and Park, J. (2016). Hermite–Hadamard type inequalities for MT–convex functions via classical integrals and fractional integrals. J. Nonlinear Sci. Appl., 9, 766–777.
[12] Mihai, M.V. (2013). Some Hermite– Hadamard type inequalities via Riemann– Liouville fractional calculus. Tamkang J. Math, 44(4), 411–416.
[13] Mubeen, S. and Habibullah, G.M. (2012). k– Fractional integrals and applications. Int. J. Contemp. Math. Sci., 7, 89–94.
[14] Noor, M.A. Noor, K.I. Awan, M.U. and Khan, S. (2014). Hermite–Hadamard inequal- ities for s–Godunova–Levin preinvex func- tions. J. Adv. Math. Stud., 7(2), 12–19.
[15] Omotoyinbo, O. and Mogbodemu, A. (2014). Some new Hermite–Hadamard integral in- equalities for convex functions. Int. J. Sci. In- novation Tech., 1(1), 1–12.
[16] O(¨)zdemir, M.E. Dragomir, S.S. and Yildiz, C.(2013). The Hadamard’s inequality for convex function via fractional integrals. Acta Mathe- matica Scientia, 33(5), 153–164.
[17] Sarikaya, M.Z. and Ertugral, F. (2020). On the generalized Hermite–Hadamard inequal- ities. Annals of the University of Craiova – Mathematics and Computer Science Series, in press.
[18] Sarikaya, M.Z. and Yildirim, H. (2007). On generalization of the Riesz potential. Indian Jour. of Math. and Mathematical Sci., 3(2), 231–235.
[19] Set, E. Noor, M.A. Awan, M.U. and G¨ozpinar, A. (2017). Generalized Hermite– Hadamard type inequalities involving frac- tional integral operators. J. Inequal. Appl., 169, 1–10.
[20] Wang, H. Du, T.S. and Zhang, Y. (2017). k– fractional integral trapezium–like inequalities through (h, m)–convex and (Q, m)–convex mappings. J. Inequal. Appl., 2017(311), 20.
[21] Weir, T. and Mond, B. (1988). Preinvex func- tions in multiple objective optimization. J. Math. Anal. Appl., 136, 29–38.
[22] Zhang, X.M. Chu, Y.M. and Zhang, X.H.(2010). The Hermite–Hadamard type inequal- ity of GA–convex functions and its applica- tions. J. Inequal. Appl., Article ID 507560, 11.
[23] Zhang, Y. Du, T.S. Wang, H. Shen, Y.J. and Kashuri, A. (2018). Extensions of diferent type parameterized inequali- ties for generalized (m, h)–preinvex mappings via k–fractional integrals. J. Inequal. Appl., 2018(49), 30.