Psoralen immunomodulation: In vitro macrophage reprogramming to enhance osseointegration of 3D-printed porous titanium scaffolds in osteoporosis
Psoralen inhibits osteoclast activity and bone resorption while enhancing osteoblast activity and bone formation. However, its role in modulating macrophage polarization to enhance osteoblast function and scaffold osseointegration under osteoporotic conditions remains underexplored. We fabricated Voronoi-structured metal scaffolds by 3D printing and evaluated psoralen in vitro in a macrophage– bone marrow mesenchymal stem cell co-culture system using serum from psoralen-treated rats, and in vivo in an osteoporotic bone-defect model with oral psoralen administration. The results demonstrated that psoralen treatment promoted M2 macrophage polarization, increased the M2/M1 ratio, and upregulated osteogenic gene expression in vitro. Improved bone formation parameters—including bone volume fraction, trabecular thickness, and trabecular number—around the implanted scaffolds were observed in vivo. The findings suggest a synergistic effect between gradient scaffold structures and psoralen in enhancing M2-mediated osteogenesis. Taken together, these findings may provide novel strategies for improving bone repair and prosthesis integration in osteoporosis.

- Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin North Am. 2020;104(5):873-884. doi: 10.1016/j.mcna.2020.06.004
- Ren Y, Song X, Tan L, et al. A review of the pharmacological properties of psoralen. Front Pharmacol. 2020;11:571535. doi: 10.3389/fphar.2020.571535
- An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 2016;147:46-58. doi: 10.1016/j.lfs.2016.01.024
- Li F, Li Q, Huang X, et al. Psoralen stimulates osteoblast proliferation through the activation of nuclear factor-κB-mitogen-activated protein kinase signaling. Exp Ther Med. 2017;14(3):2385-2391. doi: 10.3892/etm.2017.4771
- Li JP, Xie BP, Zhang WJ, et al. Psoralen inhibits RAW264.7 differentiation into osteoclasts and bone resorption by regulating CD4+T cell differentiation. Zhongguo Zhong Yao Za Zhi. 2018;43(6):1228-1234. Chinese. doi: 10.19540/j.cnki.cjcmm.20180104.017
- Isa AI, Fouotsa H, Mohammed OA, et al. Psoralen isolated from the roots of Dorstenia psilurus Welw. Modulate Th1/Th2 cytokines and inflammatory enzymes in LPS-stimulated RAW 264.7 macrophages. Mediators Inflamm. 2024;2024:8233689. doi: 10.1155/2024/8233689
- Guo Y, Xu S, Pan X, et al. Psoralen protects neurons and alleviates neuroinflammation by regulating microglial M1/ M2 polarization via inhibition of the Fyn-PKCδ pathway. Int Immunopharmacol. 2024;137:112493. doi: 10.1016/j.intimp.2024.112493
- Luo L, Zheng W, Li J, et al. 3D-printed titanium trabecular scaffolds with sustained release of hypoxia-induced exosomes for dual-mimetic bone regeneration. Adv Sci (Weinheim). 2025;12(23):e2500599. doi: 10.1002/advs.202500599
- Pirogova Y, Tashkinov M, Vindokurov I, et al. Design of lattice structures for trabecular-bone scaffolds: comparative analysis of morphology and compressive mechanical behaviour. Biomech Model Mechanobiol. 2025;24(5):1535-1564. doi: 10.1007/s10237-025-01980-5
- Walczak M, Okuniewski W, Nowak WJ, Chocyk D, Pasierbiewicz K. Corrosion behavior of shot peened Ti6Al4V alloy fabricated by conventional and additive manufacturing. Materials (Basel). 2025;18(10):2274. doi: 10.3390/ma18102274
- Xu M, Lin Y, Lin Z, Cheng H. Elastic and fatigue properties of additively manufactured and milled Ti- 6Al-4V removable partial denture clasps. J Prosthet Dent. 2025;133(1):230.e1-230.e8. doi: 10.1016/j.prosdent.2024.09.017
- Wang Y, Ma C, Wu Y, Gao D, Meng Y, Wang H. Comprehensive evaluation of biomechanical and biological properties of the porous irregular scaffolds based on voronoi-tessellation. J Bionic Eng. 2025;22:322-340. doi: 10.1007/s42235-024-00630-3
- Wang Y, Wu Z, Li C, et al. Effect of bisphosphonate on bone microstructure, mechanical strength in osteoporotic rats by ovariectomy. BMC Musculoskelet Disord. 2024;25(1):725. doi: 10.1186/s12891-024-07846-8
- Sartori M, Bregoli C, Carniato M, et al. Biological characterization of Ti6Al4V additively manufactured surfaces: comparison between ultrashort laser texturing and conventional post-processing. Adv Healthc Mater. 2025;14(4):e2402873. doi: 10.1002/adhm.202402873
- Yan K, Ngadiman NHA, Saman MZM, Mustafa NS. Advancements in selective laser melting (SLM) of titanium alloy scaffolds for bone tissue engineering. Biofabrication. 2025;17(2):022016. doi: 10.1088/1758-5090/adc6c0
- Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting. Mater Sci Eng C Mater Biol Appl. 2013;33(1):419-426. doi: 10.1016/j.msec.2012.09.008
- Sevcikova J, Pavkova Goldbergova M. Biocompatibility of NiTi alloys in the cell behaviour. Biometals. 2017;30(2):163-169. doi: 10.1007/s10534-017-0002-5
- Si Y, Dong S, Li M, et al. Curcumin-encapsulated exosomes in bisphosphonate-modified hydrogel microspheres promote bone repair through macrophage polarization and DNA damage mitigation. Mater Today. Bio. 2025;32:101874. doi: 10.1016/j.mtbio.2025.101874
- Peng P, Wong P, Lv Z, et al. Tectorigenin ameliorates glucocorticoid-induced osteoporosis by inhibiting the NF- κB signal pathway and modulating Treg-Th17 cell balance. J Cell Mol Med. 2025;29(13):e70705. doi: 10.1111/jcmm.70705
- Shen X, Zhang Q, Ding J, et al. Licochalcone D inhibits osteoclast differentiation and postmenopausal osteoporosis by inactivating the NF-κB signaling pathway. J Orthop Surg Res. 2025;20(1):713. doi: 10.1186/s13018-025-06132-0
- Ma Z, Liu Y, Shen W, et al. Osteoporosis in postmenopausal women is associated with disturbances in gut microbiota and migration of peripheral immune cells. BMC musculoskeletal disorders, 2024;25(1):791. doi: 10.1186/s12891-024-07904-1
- Talaat RM, Sidek A, Mosalem A, Kholief A. Effect of bisphosphonates treatment on cytokine imbalance between TH17 and Treg in osteoporosis. Inflammopharmacology. 2015;23(2–3):119-125. doi: 10.1007/s10787-015-0233-4
- Chen Z, Lin F, Gao Y, et al. FOXP3 and RORγt: transcriptional regulation of Treg and Th17. Int Immunopharmacol. 2011;11(5):536-542. doi: 10.1016/j.intimp.2010.11.008
- Weng Z, Ye J, Cai C, et al. Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy. J Nanobiotechnol. 2024:22(1):314. doi: 10.1186/s12951-024-02581-7
- Xu W, Zhang Y, Huang X, et al. Alendronate carbon dots targeting bone immune microenvironment for the treatment of osteoporosis. Chem Eng J. 2024;494:152209. doi: 10.1016/j.cej.2024.152209
- Maruthamuthu V, Henry LJK, Ramar MK, Kandasamy R. Myxopyrum serratulum ameliorates airway inflammation in LPS-stimulated RAW 264.7 macrophages and OVA-induced murine model of allergic asthma. J Ethnopharmacol. 2020;255:112369. doi: 10.1016/j.jep.2019.112369
- Wu S, Ma J, Liu J, et al. Immunomodulation of telmisartan-loaded PCL/PVP scaffolds on macrophages promotes endogenous bone regeneration. ACS Appl Mater Interfaces. 2022;14(14):15942-15955. doi: 10.1021/acsami.1c24748
- Abedi N, Sadeghian A, Kouhi M, et al. Immunomodulation in bone tissue engineering: recent advancements in scaffold design and biological modifications for enhanced regeneration. ACS Biomater Sci Eng. 2025; 11(3): 1269-1290. doi: 10.1021/acsbiomaterials.4c01613
- Ji X, Yuan X, Ma L, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) / nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics. 2020;10(2):725-740. doi: 10.7150/thno.39167
- Zhang F, Lv M, Wang S, et al. Ultrasound-triggered biomimetic ultrashort peptide nanofiber hydrogels promote bone regeneration by modulating macrophage and the osteogenic immune microenvironment. Bioact Mater. 2023;31:231-246. doi: 10.1016/j.bioactmat.2023.08.008
- Song Q, Zhang Y, Hu H, et al. Multifunctional hydrogel with synergistic reactive oxygen species scavenging and macrophage polarization-induced osteo-immunomodulation for enhanced bone regeneration. ACS Appl Mater Interfaces. 2025;17(27):38985-39001. doi: 10.1021/acsami.5c08737
- Wu M, Liu H, Li D, et al. Smart-responsive multifunctional therapeutic system for improved regenerative microenvironment and accelerated bone regeneration via mild photothermal therapy. Adv Sci (Weinh). 2024;11(2):e2304641. doi: 10.1002/advs.202304641
- Xu L, Zhu J, Rong L, et al. Osteoblast-specific down-regulation of NLRP3 inflammasome by aptamer-functionalized liposome nanoparticles improves bone quality in postmenopausal osteoporosis rats. Theranostics. 2024;14(10):3945-3962. doi: 10.7150/thno.95423
- Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016
- Kong Y, Yang Y, Hou Y, Wang Y, Li W, Song Y. Advance in the application of organoids in bone diseases. Front Cell Dev Biol. 2024;12:1459891. doi: 10.3389/fcell.2024.1459891
- Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/ cartilage organoids: strategy, progress, and application. Bone Res. 2024;12(1):66. doi: 10.1038/s41413-024-00376-y
- Rogers TL, Holen I. Tumour macrophages as potential targets of bisphosphonates. J Transl Med. 2011;9:177. doi: 10.1186/1479-5876-9-177
- Brown JP. Long-term treatment of postmenopausal osteoporosis. Endocrinol Metab (Seoul). 2021;36(3):544-552. doi: 10.3803/EnM.2021.301
- Su N, Villicana C, Zhang C, et al. Aspirin synergizes with mineral particle-coated macroporous scaffolds for bone regeneration through immunomodulation. Theranostics. 2023;13(13):4512-4525. doi: 10.7150/thno.85946
