AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025290295
RESEARCH ARTICLE

3D-printable alginate-MoS2-AgNW hydrogel bioink for dual-mode wearable capacitive biosensors

Suraj Shinde1† Kang Hyeon Kim1,2† Omkar Pawar3 Omkar A. Patil3 Sooman Lim3 Han Eol Lee1,2,4*
Show Less
1 Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju-si, Jeonbuk State, South Korea
2 Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, Jeonbuk State, South Korea
3 Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, South Korea
4 Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju-si, Jeonbuk State, South Korea
†These authors contributed equally to this work.
Received: 18 July 2025 | Accepted: 22 August 2025 | Published online: 25 August 2025
(This article belongs to the Special Issue 3D-Printed Biomedical Devices)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The advancement of bioinks capable of enabling multifunctional, skin-conformal sensing platforms is essential for the next generation of wearable health monitoring systems. In this study, we present a 3D-printed, dual-mode biosensor fabricated using a composite hydrogel ink comprising sodium alginate, exfoliated molybdenum disulfide nanosheets (MoS₂NSs), silver nanowires (AgNWs), and Ca²+ crosslinkers. This bioink enables reliable extrusion-based printing on flexible substrates, forming wearable, conductive, and mechanically robust sensor architectures. The resulting soft sensor exhibits high-sensitivity capacitive touch sensing with fast response times and excellent mechanical repeatability under dynamic loading conditions. Furthermore, the device allows for real-time monitoring of sweat rate in response to constant humidity and perspiration levels. The synergistic integration of 2D MoS₂NSs and 1D AgNWs significantly improves electrical conductivity and mechanical durability, without compromising printability or hydration compatibility. The demonstrated dual-sensing functionality and scalable fabrication strategy underscore the potential of this platform for low-cost, customizable applications in wearable healthcare, fitness tracking, and human-machine interfaces.  

 

Graphical abstract
Keywords
3D bioprinting
Alginate hydrogel
Capacitive touch sensing
Sweat rate monitoring
Flexible sensors
Skin-interfaced devices
Funding
Not applicable
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Che Ab Rahman A, Lee B-J,Lim S. Optimizing polymethyl methacrylate (PMMA)-based stretchable microneedle arrays by vat photopolymerization for efficient drug loading. Additive Manufacturing. 2024;94:104472. doi: j.addma.2024.104472
  2. Bae L K,Choi M K. Deformable Heat-Dissipation Materials for Smart E-Skin. J Korean Inst Electr Electron Mater Eng. 2025;38(1):21-32. doi: 10.4313/JKEM.2025.38.1.3
  3. Jeong S, Hwang Y S, et al. Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors. J Korean Inst Electr Electron Mater Eng. 2024;37(2):223-229. doi: 10.4313/JKEM.2024.37.2.15
  4. Park J-C. Influence of Al Content on the Resonant Characteristics of Al-Mo Thin Film-Based SAW Devices. Trans Electr Electron Mater. 2025;38(1):65-71. doi: 10.4313/JKEM.2025.38.1.8
  5. Khan F, Mubashir T, Ahmed K, Shahoor M, Mateen A, Lee S N,Ahmed T. Fabrication and Characterization of Carbon Nanotubes-Based Pressure Nanosensors: A Study on Piezoresistive Behavior. Trans Electr Electron Mater. 2023;24(6):518-527. doi: 10.1007/s42341-023-00472-6
  6. Pawar O Y,Lim S. 3D-Printed piezoelectric nanogenerator with aligned graphitic carbon nitrate nanosheets for enhancing piezoelectric performance. J Colloid Interface Sci. 2024;654(Pt B):868-877. doi: 10.1016/j.jcis.2023.10.105
  7. Kim J H, Joe D J,Lee H E. Sweat-permeable electronic skin with a pattern of eyes for body temperature monitoring. Micro Nano Syst Lett. 2023;11(1):7 doi: 10.1186/s40486-023-00170-1
  8. Shinde S, Kim K H, Park S Y, Kim J H, Kim J, Joe D J,Lee H E. Wearable sweat-sensing patches for non-invasive and continuous health tracking. Sens Actuators Rep. 2025;9:100265. doi: 10.1016/j.snr.2024.100265
  9. Son J, Bae G Y, et al. Cactus-Spine-Inspired Sweat-Collecting Patch for Fast and Continuous Monitoring of Sweat. Adv Mater. 2021;33(40):e2102740. doi: 10.1002/adma.202102740.
  10. Liang H R, Zhu M J, et al. Sweat-Enhanced Self-Adhesive Double- Network Hydrogel for Dynamic Skin Electrophysiology. Acs Materials Letters. 2024;6(11):4922-4931. doi: 10.1021/acsmaterialslett.4c01748
  11. Lyzwinski L, Elgendi M, Shokurov A V, Cuthbert T J, Ahmadizadeh C,Menon C. Opportunities and challenges for sweat-based monitoring of metabolic syndrome via wearable technologies. Commun Eng-London. 2023;2(1):48. doi: 10.1038/s44172-023-00097-w
  12. Yeon H, Lee H, et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci Adv. 2021;7(27):eabg8459 doi: 10.1126/sciadv.abg8459
  13. Kim J H, Kim H, Jeong C K,Lee H E. 3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites. J Sens Sci Technol. 2022;31(5):307-311. doi: 10.46670/jsst.2022.31.5.307.
  14. Liu Y, Liu J, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3(1):58-68. doi: 10.1038/s41551-018-0335-6
  15. Zhou P C, Zhang Z M, Mo F,Wang Y. A Review of Functional Hydrogels for Flexible Chemical Sensors. Adv Sensor Res. 2024;3(3):2300021. doi: 10.1002/adsr.202300021
  16. Shinde S, Patil O A, et al. Wearable sweat glucose monitoring patches enabled by double network hydrogel-MoS2/PEDOT: PSS nanocomposite. Microchem J. 2025;215:114309. doi: 10.1016/j.microc.2025.114309
  17. Morozkina S, Strekalovskaya U, Vanina A, Snetkov P, Krasichkov A, Polyakova V,Uspenskaya M. The Fabrication of Alginate-Carboxymethyl Cellulose-Based Composites and Drug Release Profiles. Polymers (Basel). 2022;14(17):3604. doi: 10.3390/polym14173604.
  18. Jia J, Richards D J, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323-4331. doi: 10.1016/j.actbio.2014.06.034
  19. Zhang W, Kuss M, Yan Y,Shi W. Dynamic Alginate Hydrogel as an Antioxidative Bioink for Bioprinting. Gels. 2023;9(4):312. doi: 10.3390/gels9040312
  20. Salesa B, Llorens-Gamez M,Serrano-Aroca A. Study of 1D and 2D Carbon Nanomaterial in Alginate Films. Nanomaterials (Basel). 2020;10(2):206. doi: 10.3390/nano10020206
  21. Zhang Y, Li S, et al. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors. Carbohydr Polym. 2023;315:120953. doi: 10.1016/j.carbpol.2023.120953
  22. Huang J, Chen G, et al. Ultrafast and facile construction of programmable, multidimensional wrinkled-patterned polyacrylamide/sodium alginate hydrogels for human skin-like tactile perception. Carbohydr Polym. 2023;319:121196. doi: 10.1016/j.carbpol.2023.121196
  23. Shinde S,Lee H E. Wearable Strain Sensors via Tough and Conductive Hydrogel-Based MoS (2) Composites for Real- Time Motion Tracking. ACS Omega. 2025;10(23):25102-25110. doi: 10.1021/acsomega.5c03752
  24. Choudhury S, Deepak D, Bhattacharya G, McLaughlign J,Roy S S. MoS-Polyaniline Based Flexible Electrochemical Biosensor: Toward pH Monitoring in Human Sweat. Macromol Mater Eng. 2023;308(8):2300007. doi: 10.1002/mame.202300007
  25. Li L, Ai Z, Wu J, Lin Z, Huang M, Gao Y,Bai H. A robust polyaniline hydrogel electrode enables superior rate capability at ultrahigh mass loadings. Nat Commun. 2024;15(1):6591. doi: 10.1038/s41467-024-50831-x
  26. Yu J, Wan R, et al. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics. Small. 2024;20(19):e2308778. doi: 10.1002/smll.202308778
  27. Lu Y Y, Yang G, et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nature Electronics. 2023;7(1):51-65. doi: 10.1038/s41928-023-01091-y
  28. Van Tam T, Chandra Bhamu K, Jae Kim M, Gu Kang S, Suk Chung J, Hyun Hur S,Mook Choi W. Engineering phosphorous doped graphene quantum dots decorated on graphene hydrogel as effective photocatalyst and high-current density electrocatalyst for seawater splitting. Chem Eng J. 2024;480:148190. doi: 10.1016/j.cej.2023.148190
  29. Peng Q Y, Chen J S, et al. Recent advances in designing conductive hydrogels for flexible electronics. Infomat. 2020;2(5):843-865. doi: 10.1002/inf2.12113
  30. Fan Q, Zhang K, et al. Molecular Weight Tailored Hydrogen Bonding Networks in PVA/PEDOT: PSS: Decoupling the Conductivity-Flexibility Trade-Off for Robust Epidermal EMG Monitoring. ACS Appl Mater Interfaces. 2025;17(29):42278-42292. doi: 10.1021/acsami.5c08001
  31. Lo L W, Zhao J, Wan H, Wang Y, Chakrabartty S,Wang C. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. ACS Appl Mater Interfaces. 2021;13(18):21693-21702. doi: 10.1021/acsami.1c00537
  32. Er E,Ates A K. Design of an electrochemical sensing platform based on MoS2-PEDOT:PSS nanocomposite for the detection of epirubicin in biological samples. Microchem J. 2023;189:108534. doi: 10.1016/j.microc.2023.108534
  33. Zhao C, Deng B, Chen G C, Lei B, Hua H, Peng H L,Yan Z M. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Res. 2016;9(4): 963-973. doi: 10.1007/s12274-016-0984-2
  34. Li P, Zhang D,Wu Z. Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sensors and Actuators A: Physical. 2019;286:51-58. doi: 10.1016/j.sna.2018.12.026
  35. Kinnamon D, Ghanta R, Lin K-C, Muthukumar S,Prasad S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci Rep. 2017;7(1):13312. doi: 10.1038/s41598-017-13684-7
  36. Shalini V, Harish S, Ikeda H, Hayakawa Y, Archana J,Navaneethan M. Investigating the effect of defect states and to enhance the electrical conductivity of p-type Vanadium-doped MoS2 for wearable thermoelectric application. Journal of Alloys and Compounds. 2023;960:170317. doi: 10.1016/j.jallcom.2023.170317
  37. Sha R,Bhattacharyya T K. MoS-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta. 2020;349:136370. doi: 10.1016/j.electacta.2020.136370
  38. Lee H G,Lee G. The Change of IV Characteristics by Gate Voltage Stress on Few Atomic Layered MoS 2 Field Effect Transistors. J Korean Inst Electr Electron Mater Eng. 2018;31(3):135-140. doi: 10.4313/JKEM.2018.31.3.135
  39. Sharma R, Kumar A, et al. Liquid Phase Exfoliation and Characterization of Few Layer MoS and WS Nanosheets as Channel Material in Field Effect Transistor. Trans Electr Electron Mater. 2023;24(2):140-148. doi: 10.1007/s42341-023-00429-9
  40. Choi S, Han S I, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol. 2018;13(11):1048-1056. doi: 10.1038/s41565-018-0226-8
  41. Ahn Y, Lee H, Lee D,Lee Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl Mater Interfaces. 2014;6(21):18401-18407. doi: 10.1021/am504462f
  42. Appel J H, Li D O, Podlevsky J D, Debnath A, Green A A, Wang Q H,Chae J. Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS(2) and WS(2). ACS Biomater Sci Eng. 2016;2(3):361-367. doi: 10.1021/acsbiomaterials.5b00467
  43. Kaur J, Singh M, et al. Biological interactions of biocompatible and water-dispersed MoS(2) nanosheets with bacteria and human cells. Sci Rep. 2018;8(1):16386. doi: 10.1038/s41598-018-34679-y
  44. Mondal S, Kim S J,Choi C G. Honeycomb-like MoS(2) Nanotube Array-Based Wearable Sensors for Noninvasive Detection of Human Skin Moisture. ACS Appl Mater Interfaces. 2020;12(14):17029-17038. doi: 10.1021/acsami.9b22915
  45. Liu Y, Liu D, Xue Y, Sun H, Zhan X, Sun L,Kang K. How Advanced are Conductive Nanocomposite Hydrogels for Repairing and Monitoring Myocardial Infarction? Int J Nanomedicine. 2025;20(null):6777-6812. doi: 10.2147/IJN.S503445
  46. Chang C, Guan X, Lin J, Nie H, Zhou X, Xie X,Ye Y. MoS(2) Decorated Silver Nanowire-Reduced Graphene Oxide Aerogel Micro-Particle for Thermally Conductive Polymer Composites with Enhanced Flame Retardancy. Macromol Rapid Commun. 2022;43(18):e2200026. doi: 10.1002/marc.202200026
  47. Choi S G, Seok H J, Kim J, Kang J,Kim H K. Transparent and flexible passivation of MoS(2)/Ag nanowire with sputtered polytetrafluoroethylene film for high performance flexible heaters. Sci Rep. 2022;12(1):6010. doi: 10.1038/s41598-022-09813-6
  48. Zhou H W, Yang N, et al. Effects of CaCl, HCl, acetic acid or citric acid on dynamic mechanical performances and physicochemical properties of sodium alginate edible films. Food Packaging Shelf. 2022;34:100935. doi: 10.1016/j.fpsl.2022.100935
  49. Tai Y, Mulle M, Aguilar Ventura I,Lubineau G. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale. 2015;7(35): 14766-14773. doi: 10.1039/c5nr03155a
  50. Wang C, Wang H, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv. 2022;8(20):eabo1396. doi: 10.1126/sciadv.abo1396
  51. Zhang Z, Yang J, et al. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. Sci Adv. 2024;10(2):eadj5389. doi: 10.1126/sciadv.adj5389
  52. Qiao X, Cai Y, Kong Z, Xu Z,Luo X. A Wearable Electrochemical Sensor Based on Anti-Fouling and Self-Healing Polypeptide Complex Hydrogels for Sweat Monitoring. ACS Sens. 2023;8(7): 2834-2842. doi: 10.1021/acssensors.3c00778

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing