AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025280279
RESEARCH ARTICLE

Pyridinium-based acrylate additives for multifunctional 3D-printable photosensitive resins with antibacterial, antistatic, and high-strength properties

Qiaoling Zhang1† Tongyi Wu1† Taojun Lin1 Xiangqin Ding1 Zhiwei Zhang1 Jianqing Liang1 Rong Li1 Xiaomin Zhang2* Guoqiao Lai1* Qiu Chen1*
Show Less
1 College of Material, Chemistry, and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China
2 Zhejiang Xunshi Technology Co., Ltd., Shaoxing, Zhejiang, China
†These authors contributed equally to this work.
Received: 10 July 2025 | Accepted: 22 August 2025 | Published online: 25 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The increasing demand for biomaterial safety in precision medical device manufacturing and electronic packaging highlights the critical need for the rapid development of 3D-printable photosensitive resins that offer high mechanical strength, durable antibacterial effectiveness, and consistent antistatic properties. Traditional approaches involving multiple additives often result in poor compatibility, low success rates in 3D printing, compromised functionality or mechanical properties, and insufficient functional stability and longevity. To address this challenge, we introduce a new category of pyridinium-based acrylate photosensitive additives. By adjusting the quantity of pyridinium functional groups within a single additive, we have successfully achieved multifunctionalization of the 3D printing resin. The findings indicated that the pyridinium-based acrylate additive endows the 3D-printed photosensitive resin with exceptional antibacterial efficacy (>99.99% against Escherichia coli and Staphylococcus aureus), strong antistatic performance (resistance: 10⁹ Ω), and high tensile strength (40.86 MPa). Furthermore, the resin demonstrated enduring and consistent antibacterial and antistatic properties. The study suggests that the novel pyridinium-based acrylate photosensitive additive can achieve a breakthrough in enhancing multifunctional 3D printing resin performance.  

Graphical abstract
Keywords
Antibacterial
Antistatic
Photosensitive resin
Pyridine-based acrylic ester
UV-light curing 3D printing
Funding
This work was financially supported by Hangzhou Normal University (grant nos. 114095F49123259 and 4095F49123037).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Stevens LM, Almada NT, Kim HS, Page ZA. Visible-light-fueled polymerizations for 3D printing. Accounts Chem Res. 2025;58(2):250-260. doi: 10.1021/acs.accounts.4c00680
  2. Wu T, Ding X, Yuan K, Liu T, Lai G, Chen Q. Synthesis and characterization of silicon-modified polyurethane acrylate for UV-thermal dual curing in three dimensional printing. ACS Appl Polym Mater. 2024;6(14):8585-8597. doi: 10.1021/acsapm.4c01581
  3. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
  4. Gao W, Guo Y, Cui J, et al. Dual-curing polymer systems for photo-curing 3D printing. Addit Manuf. 2024;85:104142. doi: 10.1016/j.addma.2024.104142
  5. Zheng M-Y, Jin Z-B, Ma Z-Z, Gu Z-G, Zhang J. Photo-curable 3D printing of circularly polarized afterglow metal–organic framework monoliths. Adv Mater. 2024;36(25):2313749. doi: 10.1002/adma.202313749
  6. He C-F, Sun Y, Liu N, Yu K, Qian Y, He Y. Formation theory and printability of photocurable hydrogel for 3D bioprinting. Adv Funct Mater. 2023;33(29):2301209. doi: 10.1002/adfm.202301209
  7. Wu T, Zhang Q, Zhang Z, et al. Multiple hydrogen bonded 3D-printed elastomers with enhanced toughening by photothermal dual curing for customizable biomimetic flexible grippers. Adv Funct Mater. 2025;e10489. doi: 10.1002/adfm.202510489
  8. Mu X, Bertron T, Dunn C, et al. Porous polymeric materials by 3D printing of photocurable resin. Mater Horiz. 2017;4(3):442-449. doi: 10.1039/C7MH00084G
  9. Sun X, Chen S, Qu B, et al. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun. 2023; 14(1):6586. doi: 10.1038/s41467-023-42369-1
  10. You J-L, Liu IT, Chen Y-H, Balaji R, Tung S-H, Liao Y-C. Adamantane-based low-dielectric-constant photocurable resin for 3D printing electronics. Addit Manuf. 2024;82:104047.doi: 10.1016/j.addma.2024.104047
  11. Zhang T, Chen D, Zhang N, et al. Self-assembled supramolecular nanofibers integrate pH-responsive drug delivery and antimicrobial for combined cancer therapy. Chinese Chem Lett. 2025;111117. doi: 10.1016/j.cclet.2025.111117
  12. Zhong G, Deng S, Hong Y, et al. AIE-active antibacterial photosensitizer disrupting bacterial structure: multicenter validation against drug-resistant pathogens. Small Methods. 2025;9(5):2401663. doi: 10.1002/smtd.202401663
  13. Zhu Y, Qin L, Yang M, et al. Dual-functional benzotrithiophene-based covalent organic frameworks for photocatalytic detoxification of mustard gas simulants and antibacterial defense. Small. 2025;21(12):2412118. doi: 10.1002/smll.202412118
  14. Tang X, Yan G, Wang J, et al. Self-assembly and antistatic property of ionic liquid crystalline polymers. Polym Adv Technol. 2022;33(5):1628-1641. doi: 10.1002/pat.5626
  15. Zhuang Y, Tang X, Chang X, et al. Self-assembly and antistatic property of poly(styrene sulfonic acid)-based graphene oxide liquid crystal compounds. Liquid Crystals. 2022;49(5):731-741. doi: 10.1080/02678292.2021.2006810
  16. Ma Q, Buchon L, Magné V, et al. Charge transfer complexes (CTCs) with pyridinium salts: toward efficient dual photochemical/thermal initiators and 3D printing applications. Macromol Rapid Commun. 2022;43(19):2200314. doi: 10.1002/marc.202200314
  17. Goldbach E, Allonas X, Halbardier L, Ley C, Croutxé- Barghorn C. Use of pyridine derivatives as inhibitor/ retarding agent for photoinduced cationic polymerization of epoxides. React Funct Polym. 2024;200:105922. doi: 10.1016/j.reactfunctpolym.2024.105922
  18. Zhou Q, Chen S, Guo X, Zhou C, Jin M. New water-soluble coumarin-ketone-pyridium salts photoinitiators for antibacterial coatings under visible LED photocuring. Eur Polym J. 2025;230:113896. doi: 10.1016/j.eurpolymj.2025.113896
  19. Wu T, Zhang Q, Xie Z, et al. High dispersibility Organosilicon@ZnO-NPs prepared by spray sedimentation method: similar chain extender enhances the strength, antimicrobial, and UV shielding of 3D printing composite materials. Compos Part B Eng. 2025;295:112196. doi: 10.1016/j.compositesb.2025.112196
  20. Jarach N, Cohen M, Gitt R, Dodiuk H, Kenig S, Magdassi S. Untying the knot: a fully recyclable, solvent-free, wide-spectral photocurable thermoset adhesive. Adv Mater. 2025;37:e2502040. doi: 10.1002/adma.202502040
  21. Lv Y, Xu Y, Zhang S, et al. Rapidly photocurable and strongly adhesive hydrogel-based sealant with good procoagulant activity for lethal hemorrhage control. Adv Funct Mater. 2025;e2501904. doi: 10.1002/adfm.202501904
  22. Hu P, Xu H, Pan Y, Sang X, Liu R. Upconversion particle-assisted NIR polymerization enables microdomain gradient photopolymerization at inter-particulate length scale. Nat Commun. 2023;14(1):3653. doi: 10.1038/s41467-023-39440-2
  23. Chen Q, Liu Y, Peng X, et al. A novel photosensitive poly(amic acid) for reducing film thickness shrinkage after curing. Mater Today Commun. 2025;47:113210. doi: 10.1016/j.mtcomm.2025.113210
  24. Ding A, Zhang P, Zhou B, et al. Structural design and performance study of a biobased UV/moisture dual-curing coating for UV inadequate curing conditions. Mater Today Commun. 2025;44:111863. doi: 10.1016/j.mtcomm.2025.111863
  25. Sun G, Wu X, Liu R. A comprehensive investigation of acrylates photopolymerization shrinkage stress from micro and macro perspectives by real time MIR-photo-rheology. Prog Org Coat. 2021;155:106229. doi: 10.1016/j.porgcoat.2021.106229
  26. Wang J, Li J, Wang X, et al. Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly(l-lactide) and poly(ε-caprolactone). React Funct Polym. 2020;155:104695. doi: 10.1016/j.reactfunctpolym.2020.104695
  27. Xiao N, Zhang Y, Gao Y, Hu D, Sun F. A dual-functional α-diketone-based disulfide monomer for visible LED photopolymerization: mitigating volumetric shrinkage and triggering polymerization. Eur Polym J. 2024;217:113341. doi: 10.1016/j.eurpolymj.2024.113341
  28. Zhu G, Liu M, Kou Z, et al. Universal approach for developing reprocessable and reprintable plant oil-based resins for digital light processing 3D printing. Chem Eng J. 2023;475:146080. doi: 10.1016/j.cej.2023.146080
  29. Alhajj M, Liau LS, Al-Fakih AM. Polymer electrolytes for sustainable energy: a minireview on zero-carbon storage and conversion. ACS Appl Polym Mater. 2025;7(6):3442-3465. doi: 10.1021/acsapm.4c03958
  30. Wang W, Li X, Gao L, et al. Thermal cross-linking hole-transport self-assembled monolayers for perovskite solar cells. ACS Energy Lett. 2025;10(5):2250-2258. doi: 10.1021/acsenergylett.5c00457
  31. Jamal M, Benkaddour A, Pal L, et al. Multi-scale assembly and structure-process-property relationships in nanocellulosic materials. Prog Mater Sci. 2025;151:101430. doi: 10.1016/j.pmatsci.2025.101430
  32. Richbourg NR, Peppas NA. The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci. 2020;105:101243. doi: 10.1016/j.progpolymsci.2020.101243
  33. Huang Y-W, Torkelson JM. Catalyst-free polyhydroxyurethane covalent adaptable networks exhibiting full cross-link density recovery after reprocessing: facilitation by synthesis with well-designed secondary amines. Macromolecules. 2025;58(10):5356-5367. doi: 10.1021/acs.macromol.5c00280
  34. Mao H-I, Chen Y-Z, Chu R-J, et al. Recyclable thermoset-like polyurethanes from renewable epoxidized soybean oil via dynamic ester bond exchange. J Polym Sci. 2025;63(11):2379-2390. doi: 10.1002/pol.20250378
  35. Zhang Z, Liu G, Wu J, et al. High-strength dual-network hydrogels with chain-growth enhancement for multifunctional flexible sensors, triboelectric nanogenerators, and EMI shielding. Chem Eng J. 2025;519:165710. doi: 10.1016/j.cej.2025.165710
  36. Sun Q, Xu B, Du J, et al. Interfacial electrostatic charges promoted chemistry: reactions and mechanisms. Adv Colloid Interface Sci. 2025;339:103436. doi: 10.1016/j.cis.2025.103436
  37. Koochak P, Lin M, Afzalifar A, et al. Self-accelerating drops on silicone-based super liquid-repellent surfaces. ACS Nano. 2025;19(25):23105-23119. doi: 10.1021/acsnano.5c04250
  38. Nie J, Sun B, Jiao T, et al. Biodegradable air filter with electrospun composite nanofibers and cellulose fibers dual network: enhanced electrostatic adsorption, humidity resistance, and extended service life. J Hazard Mater. 2025;489:137557. doi: 10.1016/j.jhazmat.2025.137557
  39. Sun N, Yi C, Xu C, et al. Fabrication of permanent antistatic PMMA copolymer for enhanced antistatic and mechanical properties. ACS Appl Polym Mater. 2023;5(7):5 537-5543. doi: 10.1021/acsapm.3c00833
  40. Ren J, Zheng L, Wang Y, et al. Synthesis and characterization of quaternary ammonium based ionic liquids and its antistatic applications for diesel. Colloids Surf A Physicochem Eng Asp. 2018;556:239-247. doi: 10.1016/j.colsurfa.2018.08.038
  41. Tsurumaki A, Iwata T, Tokuda M, et al. Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochim Acta. 2019;308:115-120. doi: 10.1016/j.electacta.2019.04.031
  42. Bera M, De B, Gupta KBNVSG, et al. A critical review on recent progress in anti-static fiber-reinforced polymer (FRP) composites. Polym Compos. 2025;e70078. doi: 10.1002/pc.70078
  43. Yousefi E, Dolati A, Najafkhani H. Preparation of robust antistatic waterborne polyurethane coating. Prog Org Coat. 2020;139:105450. doi: 10.1016/j.porgcoat.2019.105450
  44. Huang Z, Yin L, Hu C, et al. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction. J Mater Sci Technol. 2020;40:113-118. doi: 10.1016/j.jmst.2019.08.046
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing