Pyridinium-based acrylate additives for multifunctional 3D-printable photosensitive resins with antibacterial, antistatic, and high-strength properties

The increasing demand for biomaterial safety in precision medical device manufacturing and electronic packaging highlights the critical need for the rapid development of 3D-printable photosensitive resins that offer high mechanical strength, durable antibacterial effectiveness, and consistent antistatic properties. Traditional approaches involving multiple additives often result in poor compatibility, low success rates in 3D printing, compromised functionality or mechanical properties, and insufficient functional stability and longevity. To address this challenge, we introduce a new category of pyridinium-based acrylate photosensitive additives. By adjusting the quantity of pyridinium functional groups within a single additive, we have successfully achieved multifunctionalization of the 3D printing resin. The findings indicated that the pyridinium-based acrylate additive endows the 3D-printed photosensitive resin with exceptional antibacterial efficacy (>99.99% against Escherichia coli and Staphylococcus aureus), strong antistatic performance (resistance: 10⁹ Ω), and high tensile strength (40.86 MPa). Furthermore, the resin demonstrated enduring and consistent antibacterial and antistatic properties. The study suggests that the novel pyridinium-based acrylate photosensitive additive can achieve a breakthrough in enhancing multifunctional 3D printing resin performance.

- Stevens LM, Almada NT, Kim HS, Page ZA. Visible-light-fueled polymerizations for 3D printing. Accounts Chem Res. 2025;58(2):250-260. doi: 10.1021/acs.accounts.4c00680
- Wu T, Ding X, Yuan K, Liu T, Lai G, Chen Q. Synthesis and characterization of silicon-modified polyurethane acrylate for UV-thermal dual curing in three dimensional printing. ACS Appl Polym Mater. 2024;6(14):8585-8597. doi: 10.1021/acsapm.4c01581
- Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
- Gao W, Guo Y, Cui J, et al. Dual-curing polymer systems for photo-curing 3D printing. Addit Manuf. 2024;85:104142. doi: 10.1016/j.addma.2024.104142
- Zheng M-Y, Jin Z-B, Ma Z-Z, Gu Z-G, Zhang J. Photo-curable 3D printing of circularly polarized afterglow metal–organic framework monoliths. Adv Mater. 2024;36(25):2313749. doi: 10.1002/adma.202313749
- He C-F, Sun Y, Liu N, Yu K, Qian Y, He Y. Formation theory and printability of photocurable hydrogel for 3D bioprinting. Adv Funct Mater. 2023;33(29):2301209. doi: 10.1002/adfm.202301209
- Wu T, Zhang Q, Zhang Z, et al. Multiple hydrogen bonded 3D-printed elastomers with enhanced toughening by photothermal dual curing for customizable biomimetic flexible grippers. Adv Funct Mater. 2025;e10489. doi: 10.1002/adfm.202510489
- Mu X, Bertron T, Dunn C, et al. Porous polymeric materials by 3D printing of photocurable resin. Mater Horiz. 2017;4(3):442-449. doi: 10.1039/C7MH00084G
- Sun X, Chen S, Qu B, et al. Light-oriented 3D printing of liquid crystal/photocurable resins and in-situ enhancement of mechanical performance. Nat Commun. 2023; 14(1):6586. doi: 10.1038/s41467-023-42369-1
- You J-L, Liu IT, Chen Y-H, Balaji R, Tung S-H, Liao Y-C. Adamantane-based low-dielectric-constant photocurable resin for 3D printing electronics. Addit Manuf. 2024;82:104047.doi: 10.1016/j.addma.2024.104047
- Zhang T, Chen D, Zhang N, et al. Self-assembled supramolecular nanofibers integrate pH-responsive drug delivery and antimicrobial for combined cancer therapy. Chinese Chem Lett. 2025;111117. doi: 10.1016/j.cclet.2025.111117
- Zhong G, Deng S, Hong Y, et al. AIE-active antibacterial photosensitizer disrupting bacterial structure: multicenter validation against drug-resistant pathogens. Small Methods. 2025;9(5):2401663. doi: 10.1002/smtd.202401663
- Zhu Y, Qin L, Yang M, et al. Dual-functional benzotrithiophene-based covalent organic frameworks for photocatalytic detoxification of mustard gas simulants and antibacterial defense. Small. 2025;21(12):2412118. doi: 10.1002/smll.202412118
- Tang X, Yan G, Wang J, et al. Self-assembly and antistatic property of ionic liquid crystalline polymers. Polym Adv Technol. 2022;33(5):1628-1641. doi: 10.1002/pat.5626
- Zhuang Y, Tang X, Chang X, et al. Self-assembly and antistatic property of poly(styrene sulfonic acid)-based graphene oxide liquid crystal compounds. Liquid Crystals. 2022;49(5):731-741. doi: 10.1080/02678292.2021.2006810
- Ma Q, Buchon L, Magné V, et al. Charge transfer complexes (CTCs) with pyridinium salts: toward efficient dual photochemical/thermal initiators and 3D printing applications. Macromol Rapid Commun. 2022;43(19):2200314. doi: 10.1002/marc.202200314
- Goldbach E, Allonas X, Halbardier L, Ley C, Croutxé- Barghorn C. Use of pyridine derivatives as inhibitor/ retarding agent for photoinduced cationic polymerization of epoxides. React Funct Polym. 2024;200:105922. doi: 10.1016/j.reactfunctpolym.2024.105922
- Zhou Q, Chen S, Guo X, Zhou C, Jin M. New water-soluble coumarin-ketone-pyridium salts photoinitiators for antibacterial coatings under visible LED photocuring. Eur Polym J. 2025;230:113896. doi: 10.1016/j.eurpolymj.2025.113896
- Wu T, Zhang Q, Xie Z, et al. High dispersibility Organosilicon@ZnO-NPs prepared by spray sedimentation method: similar chain extender enhances the strength, antimicrobial, and UV shielding of 3D printing composite materials. Compos Part B Eng. 2025;295:112196. doi: 10.1016/j.compositesb.2025.112196
- Jarach N, Cohen M, Gitt R, Dodiuk H, Kenig S, Magdassi S. Untying the knot: a fully recyclable, solvent-free, wide-spectral photocurable thermoset adhesive. Adv Mater. 2025;37:e2502040. doi: 10.1002/adma.202502040
- Lv Y, Xu Y, Zhang S, et al. Rapidly photocurable and strongly adhesive hydrogel-based sealant with good procoagulant activity for lethal hemorrhage control. Adv Funct Mater. 2025;e2501904. doi: 10.1002/adfm.202501904
- Hu P, Xu H, Pan Y, Sang X, Liu R. Upconversion particle-assisted NIR polymerization enables microdomain gradient photopolymerization at inter-particulate length scale. Nat Commun. 2023;14(1):3653. doi: 10.1038/s41467-023-39440-2
- Chen Q, Liu Y, Peng X, et al. A novel photosensitive poly(amic acid) for reducing film thickness shrinkage after curing. Mater Today Commun. 2025;47:113210. doi: 10.1016/j.mtcomm.2025.113210
- Ding A, Zhang P, Zhou B, et al. Structural design and performance study of a biobased UV/moisture dual-curing coating for UV inadequate curing conditions. Mater Today Commun. 2025;44:111863. doi: 10.1016/j.mtcomm.2025.111863
- Sun G, Wu X, Liu R. A comprehensive investigation of acrylates photopolymerization shrinkage stress from micro and macro perspectives by real time MIR-photo-rheology. Prog Org Coat. 2021;155:106229. doi: 10.1016/j.porgcoat.2021.106229
- Wang J, Li J, Wang X, et al. Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly(l-lactide) and poly(ε-caprolactone). React Funct Polym. 2020;155:104695. doi: 10.1016/j.reactfunctpolym.2020.104695
- Xiao N, Zhang Y, Gao Y, Hu D, Sun F. A dual-functional α-diketone-based disulfide monomer for visible LED photopolymerization: mitigating volumetric shrinkage and triggering polymerization. Eur Polym J. 2024;217:113341. doi: 10.1016/j.eurpolymj.2024.113341
- Zhu G, Liu M, Kou Z, et al. Universal approach for developing reprocessable and reprintable plant oil-based resins for digital light processing 3D printing. Chem Eng J. 2023;475:146080. doi: 10.1016/j.cej.2023.146080
- Alhajj M, Liau LS, Al-Fakih AM. Polymer electrolytes for sustainable energy: a minireview on zero-carbon storage and conversion. ACS Appl Polym Mater. 2025;7(6):3442-3465. doi: 10.1021/acsapm.4c03958
- Wang W, Li X, Gao L, et al. Thermal cross-linking hole-transport self-assembled monolayers for perovskite solar cells. ACS Energy Lett. 2025;10(5):2250-2258. doi: 10.1021/acsenergylett.5c00457
- Jamal M, Benkaddour A, Pal L, et al. Multi-scale assembly and structure-process-property relationships in nanocellulosic materials. Prog Mater Sci. 2025;151:101430. doi: 10.1016/j.pmatsci.2025.101430
- Richbourg NR, Peppas NA. The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci. 2020;105:101243. doi: 10.1016/j.progpolymsci.2020.101243
- Huang Y-W, Torkelson JM. Catalyst-free polyhydroxyurethane covalent adaptable networks exhibiting full cross-link density recovery after reprocessing: facilitation by synthesis with well-designed secondary amines. Macromolecules. 2025;58(10):5356-5367. doi: 10.1021/acs.macromol.5c00280
- Mao H-I, Chen Y-Z, Chu R-J, et al. Recyclable thermoset-like polyurethanes from renewable epoxidized soybean oil via dynamic ester bond exchange. J Polym Sci. 2025;63(11):2379-2390. doi: 10.1002/pol.20250378
- Zhang Z, Liu G, Wu J, et al. High-strength dual-network hydrogels with chain-growth enhancement for multifunctional flexible sensors, triboelectric nanogenerators, and EMI shielding. Chem Eng J. 2025;519:165710. doi: 10.1016/j.cej.2025.165710
- Sun Q, Xu B, Du J, et al. Interfacial electrostatic charges promoted chemistry: reactions and mechanisms. Adv Colloid Interface Sci. 2025;339:103436. doi: 10.1016/j.cis.2025.103436
- Koochak P, Lin M, Afzalifar A, et al. Self-accelerating drops on silicone-based super liquid-repellent surfaces. ACS Nano. 2025;19(25):23105-23119. doi: 10.1021/acsnano.5c04250
- Nie J, Sun B, Jiao T, et al. Biodegradable air filter with electrospun composite nanofibers and cellulose fibers dual network: enhanced electrostatic adsorption, humidity resistance, and extended service life. J Hazard Mater. 2025;489:137557. doi: 10.1016/j.jhazmat.2025.137557
- Sun N, Yi C, Xu C, et al. Fabrication of permanent antistatic PMMA copolymer for enhanced antistatic and mechanical properties. ACS Appl Polym Mater. 2023;5(7):5 537-5543. doi: 10.1021/acsapm.3c00833
- Ren J, Zheng L, Wang Y, et al. Synthesis and characterization of quaternary ammonium based ionic liquids and its antistatic applications for diesel. Colloids Surf A Physicochem Eng Asp. 2018;556:239-247. doi: 10.1016/j.colsurfa.2018.08.038
- Tsurumaki A, Iwata T, Tokuda M, et al. Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochim Acta. 2019;308:115-120. doi: 10.1016/j.electacta.2019.04.031
- Bera M, De B, Gupta KBNVSG, et al. A critical review on recent progress in anti-static fiber-reinforced polymer (FRP) composites. Polym Compos. 2025;e70078. doi: 10.1002/pc.70078
- Yousefi E, Dolati A, Najafkhani H. Preparation of robust antistatic waterborne polyurethane coating. Prog Org Coat. 2020;139:105450. doi: 10.1016/j.porgcoat.2019.105450
- Huang Z, Yin L, Hu C, et al. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction. J Mater Sci Technol. 2020;40:113-118. doi: 10.1016/j.jmst.2019.08.046